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Control of Automatic Processes

Abstract

A growing body of evidence suggests that traditional views of automaticity

are in need of revision. For example, automaticity has often been treated as

an all-or-none phenomenon, and traditional theories have held that automatic

processes are independent of attention. Yet recent empirical data suggest

that automatic processes are continuous, and furthermore are subject to

attentional control. In this paper we present a model of attention which

addresses these issues. Using a parallel distributed processing framework

we propose that the attributes of automaticity depend upon the strength of a

processing pathway and that strength increases with training. Using the

Stroop effect as an example, we show how automatic processes are

continuous and emerge gradually with practice. Specifically, we present a

computational model of the Stroop task which simulates the time course of

processing as well as the effects of learning. This was accomplished by

combining the cascade mechanism described by McClelland (1979) with the

back propagation learning algorithm (Rumelhart, Iinton, & Williams,

1986). The model is able to simulate performance in the standard Stroop

task, as well as aspects of performance in variants of this task which

manipulate SOA, response set, and degree of practice. In the discussion we

contrast our model with other models, and indicate how it relates to many of

the central issues in the literature on attention, automaticity, and

interference. Aco to, For
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Abstract

A growing body of evidence suggests that traditional views of automaticity

are in need of revision. For example, automaticity has often been treated as

an all-or-none phenomenon, and traditional theories have held that automatic

processes are independent of attention. Yet recent empirical data suggest

that automatic processes are continuous, and furthermore are subject to

attentional control. In this paper we present a model of attention which

addresses these issues. Using a parallel distributed processing framework

we propose that the attributes of automaticity depend upon the strength of a

processing pathway and that strength increases with training. Using the

Stroop effect as an example, we show how automatic processes are

continuous and emerge gradually with practice. Specifically, we present a

computational model of the Stroop task which simulates the time course of

processing as well as the effects of learning. This was accomplished by

combining the cascade mechanism described by McClelland (1979) with the

back propagation learning algorithm (Rumelhart, Hinton, & Williams,

1986). The model is able to simulate performance in the standard Stroop

task, as well as aspects of performance in variants of this task which

manipulate SOA, response set, and degree of practice. In the discussion we

contrast our model with other models, and indicate how it relates to many of

the central issues in the literature on attention, automaticity, and

interference.
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Introduction

The nature of attention has been one of the central concerns of experimental psychology
since its incepiion (e.g., Cattell, 1886; Pillsbury 1908). James (1890) emphasized the
selective aspects of attention and regarded attention as a process of "taking -ossession by
the mind, in clear and vivid form, of one out of what seems several simultaneously
possible objects or trains of thought" (p.403). Others, such as Moray (1969) and Posner
(1975), have noted that attention is also a heightened state of arousal, and that there appears
to be a limited pool of attention available for cognitive processes. Posner and Snyder
(1975) and Shiffrin and Schneider (1977) have provided accounts of attention that integrate
these aspects of attention and emphasize that attention is intimately tied to learning. These
accounts focus on two types of cognitive processes - controlled and automatic.
Controlled processes are voluntary, require attention, and are relatively slow, whereas
automatic processes are fast and do not require attention for their execution. Perfor'ince
of novel tasks is typically considered to rely on controlled processing; however, with
extensive practice performance of some tasks can become automaticl (e.g., LaBerge &
Samuels, 1974; Logan, 1979; Posner & Snyder, 1975; Schneider & Shiffrin, 1977;

Shiffrin & Schneider, 1977).

Many tasks have been used to examine the nature of attention and automaticity. Perhaps
the most extensively studied tasks have been the search tasks of Shiffrin and Schneider
(1977; Schneider & Shiffrin, 1977), priming tasks (e.g., Neely, 1977), and thc Stroop
task (Stroop,1935). The interpretation of such studies has often relied on the assumption
that automaticity is an all or none phenomenon. However, recent research has begun tc
question this assumption (e.g., Kahneman & Henik, 1981; MacLeod & Dunbar, 1988).

Some authors have argued that certain automatic processes are innate. For example,

Hasher and Zacks (1979) argue that the encoding of event frequency is an automatic
process and that it is innate. In this paper, however, our focus is on processes that become
automatic after extensive practice at a task.
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An alternative conception is that automaticity is a matter of degree. For example,

Kahneman and Treisman (1984) have suggested that processes may differ in the extent to

which they rely on attention, and MacLeod and Dunbar (1988) have presented data which

indicate that the attributes of automaticity develop gradually with practice. As yet,

however, there is no explicit account of the mechanisms underlying automaticity that can

explain both its gradual development with practice and its relation to selective attention.

The purpose of this paper is to provide such an account.

We will begin by illustrating the relationship between attention and automaticity - as it is

commonly construed - in the context of the Stroop interference task. We will show how
previous attempts to explain the Stroop effect point to significant gaps in our understanding

of this basic phenomenon. We will then describe a theoretical framework in which

automaticity can be viewed as a continuous phenomenon that varies with practice, and

which specifies the relationship between automaticity and attentional control in terms of

specific information processing mechanisms. The main body of the paper will describe a

simulation model that applies this theoretical framework to performance in the Stroop task.

The Stroop Task

The effects observed in the Stroop task provide a clear illustration of our capacity for

selective attention, and the ability of some stimuli to escape attentional control. In this task,
subjects are asked to respond to stimuli which vary in two dimensions, one of which they

must ignore. In the classic version of the task, subjects are shown words written in

different colored inks. When the task is to read the word, subjects are effective in ignoring
the color of the ink, as evidenced by the fact that ink color has no influence on word

reading time. However, when the task is to name the ink color, they are unable to suppress

the effects of word form. If the word conflicts with the ink color (e.g., GREEN in red

ink 1) they are consistently slower to respond (i.e., say "red") than for control stimuli (e.g.,

I Throughout this paper, references to word stimuli will appear in upper case (e.g., RED),

references to color stimuli will appear in lower case (red), and references to potential

responses will appear in quotation marks ("red").
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a ro,' of XXXX's printed in red ink); and they are faster if the word agrees with the ink

color (e.g., RED in red ink). Subiects are also slower overall at color naming than a. word
reading, suggesting that color naming is a less practiced task. These effects are highly

robust, and similar findings have been observed in a diversity of paradigms using a wide

variety of different stimuli (for reviews, see Dyer, 1973 and MacLeod, 1989). The Stroop
effect illustrates a fundamental aspect of attention: we are able to ignore some features of

the environment but not others.

The simplest explanation for the Stroop effect is that the relevant difference between color
naming and word reading is their speed of processing. Indeed, subjects are consistently

faster at reading words than naming colors. Because of this, it is often assumed that the
word arrives at the response stage of processing before color information. If the word
concurs with the color, this will lead to facilitation of the color naming response; if the
word conflicts, its influence must be "overcome" in order to generate the correct response,
leading to a longer response time for (i.e., interference with) the color naming process.

Since color information arrives at the response stage after the word information, it has no

effect on the word reading process.

However, if speed of processing is the only relevant variable, then it should be possible to
make color information conflict with word reading, by presenting color information long

enough before the onset of the word. In fact, this does not work. Glaser and Glaser
(1982) varied the stimulus onset asynchrony (SOA) of a color patch and a color word,1 and

found no interference of the color patch on word reading even when the color preceded the
word by as much as 400 msec. This result indicates that the relative finishing time of the

two processes is not the sole determinant of interference effects.

A more general approach to explaining Stoop-like effects has been to consider the role of
attention in processing. This approach draws on the distinction between automatic and

controlled processes (Cattell, 1886; Posner & Snyder, 1975; Shiffrin & Schneider, 1977).
Automatic processes are fast, do not require attention for their execution, and therefore can

As we will discuss below, the Stroop effect can still be observed even when the two
stimulus dimensions are physically disjoint.
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occur involuntarily. In contrast, controlled processes are relatively slow, require attention.
and therefore are under voluntary control. From this point of view, the results of an
automatic process are more likely to escape our attempts at selective attention than are those

of a controlled process.

Posner and Snyder applied the distinction between controlled and automatic processes
directly to the Stroop task, by making the following three assumptions: 1) word reading
is automatic; 2) color naming is controlled; and 3) if the outputs of any two processes
conflict, one of the two processes will be slowed down. In this view, the finding that
word reading is faster than color naming follows from the relatively greater speed of
automatic processes. The finding that ink color has no effect on word processing follov. s
from the assumption that color naming is controlled and therefore voluntary; so, it will h~ot

occur when the task is to ignore the color and read the word. The finding that a conflicting
word interferes with color naming follows from the automaticity (i.e., involuntary nature)
of word reading, and the assumption that conflicting outputs slow responding.

This interpretation of the Stroop task exemplifies a general method that has been used for
assessing the automaticity of two arbitrary processes A and C, based on their speed of
processing and the pattern of interference effects they exhibit. If A is faster than C, and if
A interferes with C but C does not interfere with A, then A is automatic and C is controlled.
Of course, this reasoning requires that processes A and C are in some sense comparable in
intrinsic difficulty and number of processing stages.

This method for identifying processes as automatic or controlled has gained wide
acceptance. However, evidence .','om a recent series of experiments conducted by
MacLeod and Dunbar (1988) suggests that this may not be an adequate characterization of
the processes involved in the Stroop task. They taught subjects to use color words as
names for arbitrary shapes that actually appeared in a neutral color. After 288 trials (72
trials/stimulus), subjects could perform this "shape naming" task without difficulty. At this
point, the effect that ink color had on shape naming was tested, by presenting subjects with
conflict and congruent stimuli (i.e., shapes colored to conflict or agree with their assigned
names). Ink color produced large interference and facilitation effects. However, when the
task was reversed, and subjects were asked to state the color of the ink in which the shapes

appeared (the color naming task), congruity of the shape name had no effect. They also
noted that reaction times for the shape naming task (control condition) were slower than
were those for the standard color naming task (control condition).
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MacLeod and Dunbar's results are incompatible with the explanation of the Stroop task in

terms of controlled versus automatic processing. That is, according to standard reasoning

since a) color naming is slower than word reading, b) color naming is influenced by word

information, while c) ink color does not influence word reading, it is assumed color

naming must be controlled. Yet, in MacLeod and Dunbar's experiment color naming

reversed roles. That is, a) color naming was faster than shape naming, b) color naming

was not affected by shape names, yet c) ink color did interfere with (and facilitate) shape

naming. If we ,-eat automaticity as dichotomous, we must conclude from these findings

that color naming is autoratic.

One way of accounting f-- these data - rather than trying to dichotomize processes as

controlled or automatic - is to suppose that tasks such as word reading, color naming and

shape naming lie along a continuum. This is suggested by their relative speeds of

performance and by the pattern of interference effects that exist among these tasks. Thus.

word reading is faster than and is able to interfere with color naming, while color naming is

faster than and is able to interfere with shape naming (at least at first). Such a continuum

suggests that speed of processing and interference effects are continuous variables which

depend upon the degree of autorrmatization of each task. This is supported by the following

evidence.

Continuous nature of speed of processing. Numerous studies have shown that practice

produces gradual, continuous increases in processing speed (e.g., Blackburn, 1936; Bryan

& Harter, 1899; Logan, 1979; Shiffrin & Schneider, 1977) that follow a power law

(Anderson, 1982; Kolers, 1976; Logan, 1988; Newell & Roseiabloom, 1980). MacLeod

and Dunbar also examined this variable in their study. They continued to train subjects on

the shape naming :ask with 144 trials/stimulus a day for 20 days. Reaction times showed

gradual, progressive improvement with practice.

Continuous nature of interference effects. The pattern of int:rference effects observed in

the MacLeod and Dunbar study also changed over the course of training on the shape

naming task. As mentioned earlier, after 1 day of practice, there was no effect of shape

names on color naming. After 5 days of .-.ining, however, shapes produced some

interference, and after 20 days there was a large effect. That is, presenting a shape whose

name conflicted with its ink color produced strong interference with the color naming

response. The reverse pattern of results occurred for the shape naming task. After one
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session of practice, conflicting ink color interfered with naming the shape. After 5

sessions, this interference was somewhat reduced, and after 20 sessions color no longer

had an interfering effect on shape naming.

These data sut ...st that speed of processing and interference effects are continuous in
nature, and that they are closely related to practice. Furthermore, they indicate that speed or

processing and interference effects, alone, can not be used reliably to identify processes as

controlled ur automatic. T-ese observations raise several important questions. What is the

relationship tetween processes such as word reacting, color naming and shape naming, and
how do their interactions result in the pattern of effects observed? In particular, what kind
of mechanisms can account for continuous changes in both speed of processing and
interference effects as a function of practice? Finally, and perhaps most importantly, how

does attention relate to these phenomena?

The purpo, of this paper is to provide a theoretical framework within which to address
these questions. Using the principles of parallel distributed processing (PDP), we will

describe a model of the Stroop effect in which both speed of processing and interference
effects are related to a common, underlying variable that we call strength of processing.

The model provides a mechanism for three attributes of automaticity. First, it shows how
strength varies continuously as a function of practice; second, it shows how the relative

strength of two competing processes determines the pattern of interference effects
observed; and third, it shows how the strength of a process determines the extent to which

it is governed by attention.

The model has direct implications for the standard method by which controlled and

autematic processes are distinguished. It shows that two process that use qualitatively
identical mechanisms and differ only in their strength, can exhibit differences in speed of

processing and a pattern of interference effects that make it look as though one is automatic
and the other is controlled. This suggests that these criteria - speed of processing, ability
to produce iterference, and susceptibility to interference - ,nay be inadequate for
distinguishing between controlled and automatic processing. This does not mean that the

distinction between controlled and automatic processes is useiess or invalid. Rather, the
model shows that speed of processing differences and Stroop-like interference effects can

emerge simply froi,, differen :es in strength of processing, so that these phenomena may
not provide a reliable basis for distinguishing controlled from automatic processes.
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The Processing Framework

The information processing model we wi1l describe was developed within the more general
PDP framework described by Rumelhart, Hinton and McClelland (1986). Here, we
outline some of the general characteristics of this framework. We then turn to the details of

our implementation of a model of the Stroop effect.

Architectural characteristics. Processing within the PDP framework is assumed to take
place in a system of connected modules. Each module consists of an ensemble of

elementary processing units. Each unit is a simple information processing device that
accumulates inputs from other units and adjusts its output continuously in response to these
inputs.

Representation of information. Information is represented as a pattern of activation over the

units in a module. The activation of each unit is a real valued number varying between a
maximum and minimum value. Thus, information is represented in a graded fashion, and
can accumulate and dissipate with time.

Processing. Processing occurs by the propagation of signals (spread of activation) from
one module to another. This occurs via the connections that exist between the units in
different modules. In general, there may be connections within as well as between
modules, and connections may be bi-directional. However, for present purposes we adopt

the simplification that there is a unidirectional flow of processing, starting at modules used
to represent sensory input and proceeding "forward" or "bottom-up" to modules whose

output governs the execution of overt responses.

Pathways and their strengths. A particular process is assumed to occur via a sequence of

connected modules that form a pathway. Performance of a task requires that a processing
pathway exist which allows the pattern of activation in the relevant sensory modules to
generate - through propagation of activation across intermediate modules - an
appropriate pattern of activation in the relevant output modules. The speed and accuracy
with which a task is performed depends on the speed and accuracy with which information

flows along the appropriate processing pathway. This, in turn, depends on the connections

between the units that make up the modules in that pathway. We will demonstrate this in
simulations shortly. We refer to this parameter as the strength of a pathway. Thus, the
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speed and acaracy of performing a task depend on the strength of the pathway used in that

task.

Interactions between processes. Individual modules can receive input from and send

information to several other modules. As such, each can participate in several different

processing pathways. Interactions between processes arise in this system when two

different pathways rely on a common module - that is, when pathways intersect. If both

processes are active, and the patterns of activation that each generates at their point of

intersection are dissimilar, then interference will occur within that module, and processing

will be impaired in one or both pathways. If the patterns of activation are very similar, this

will lead to facilitation.

The intersection between two pathways can occur at any point in processing after the

sensory stage. For example, interference at an intermediate stage is consistent with data

reported by Shaffer (1975) and by Allport, Antonis and Reynolds (1972). Interference at

the output stage would give rise to response competition, such as that observed in the
Stroop task (cf. Dyer, 1973). The general view that interference effects arise whenever

two processes rely on a common resource, or set of resources has been referred to as the

multiple resources view (e.g., Allport, 1982; Hirst & Kalmar, 1987; Navon & Gopher,

1979; Wickens, 1984). Logan (1985) summarizes this position succinctly: "different

tasks may depend on different resources, and dual-task interference occurs only when the

tasks share common resources. Thus, the interference a particular task produces will not

be an invariant characteristic of that task; rather, it will depend on the nature of the tasks it

is combined with" (p.376). This point will be made explicit in the simulations we present

below.

Attentional control. One way to avoid the interactions that occur at the intersection between

two pathways is to modulate the information arriving along one of them. This is one of the
primary functions of attention within this framework, and is consistent with the views on

attention expressed by several other authors (Kahneman & Treisman, 1984; Logan, 1980;

Treisman, 1960). In our system, modulation occurs by altering the responsiveness of the

processing units in a pathway. In this way, attention can be used to control individual

processes. However, this does not necessarily imply that attention requires a unique, or

even distinct component of processing. As we shall see, attention can be thought of as an

additional source of input which provides contextual support for the processing of signals

within a selected pathway.
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This framework can be used to account for many of the empirical phenomena associated

with learning and automaticity. Schneider (1985) has used a similar approach to explain

how performance in a category search task changes as a function of practice. Here, we

focus on the significance that this approach has for selective attention, using the Stroop task

as an example. In the next section we describe a simulation model of the Stroop task based

on the processing principles discussed above. We then present a series of six simulations

which demonstrate that this model is able to account for many of the empirical phenomena

associated with automaticity, and for their gradua! emergence as ai function of practice. The

first four simulations examine the attributes of automaticity evidenced in the Stroop task
(viz., speed of processing and interference effects). The remaining simulations explore

directly the relationship between processing and attention.

The Model

In this section, we describe the PDP mechanisms for processing, practice and attentional

control that we used to simulate the Stroop task.

Architecture, Processing and the Representation of Information

The architecture of this model is depicted in Figure 1. The model consists of two

processing pathways - one for processing color information, and the other for processing

word information - both of which converge on a common response mechanism. Each

pathway consists of a set of input units, a set of intermediate units, and a set of output

units. Each of the input units in a given pathway projects to all of the intermediate units in

that pathway. The intermediate units from both pathways project to all of the output units

in the model. In addition, each unit is associated with a bias term, which is a constant

value that is added to its net input (see below).
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RESPONSE

"red" "green"

red groan RED GREEN

INKCOORColor Word WR
INK COLOR Naming Reading WORD

TASK DEMAND

Figure 1. Network architecture. Units at the bottom are input units, and units at the top
are the output (response) units.

Processing in this system is strictly feedforward. A stimulus is provided by activating
units at the input level of the network. Activation then propagates to the intermediate units
and, gradually, to the output units. A response occurs when sufficient activation has
accumulated at one of the output units to exceed a response tnreshold. Reaction time is
assumed to be linearly related to the number of processing cycles that it takes for this
threshold to be exceeded (the response mechanism will be discussed in greater detail
below). In addition to the units just described, there are also two task demand (or
"attention") units - one for the color naming task and the other for the word reading task.
These are connected to the intermediate units in the two processing pathways, and are used
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to allocate attention to one or the other of them. Activation of a particular task demand unit
sensitizes processing in the corresponding pathway, as will be explained shortly.

Individual stimuli and responses have discrete representations in this model. Each color is
represented by a single input unit in the color pathway, and each word by a single input
unit in the word pathway. Similarly, each output unit represents one potential response.
We chose "local" representations of this kind to keep the model as simple and interpretable
as possible. However, nothing in principle precludes the possibility that either inputs or
outputs could be distributed over many units; and preliminary investigations indicate that
our findings using local representations generalize to systems using distributed
representations.

Mechanisms for Learning and the Time Course of Processing

The model is intended to provide an explanation of the relationship between learning and
the time course of the psychological processes involved in the Stroop task. To date, PDP
models that have addressed the time course of psychological processes have largely been
distinct from those which address learning and memory. For example, McClelland (1979)
presented a multilevel PDP system which provided an account of the time course of
psychological processes, however this system did not include a learning algorithm. The
back propagation algorithm described by Rumelhart. Hinton and Williams (1986) was
introduced as a general learning mechanism which can be used in multilevel networks.
However, PDP systems which have employed this algorithm generally have not simulated
temporal phenomena surh as reaction times. Here we describe each of these mechanisms
and their limitations in greater detail. We then show how they can be brought together to
provide a single system in which both learning and processing dynamics can be examined.

McClelland's (1979) cascade model provides a mechanism for simulating the time course
of psychological processes. In this system, information is represented as the activation of
units in a multilevel, feedforward network. Input is presented as a pattern of activation
over units at the lowest level. Information gradually propagates upward, as units at each
level update their activations based on the input they are receiving from lower levels.
Eventually a pattern of activation develops over the units at the topmost level, where a
response is generated. Units in this network update their activations based on a weighted
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sum of the input they receive from units at the previous level in the network. Specifically,
the net input at time (t) for unitj (at leveln) is calculated as:

netj(t) = Z ai(t)wij (Equation 1)

where ai(t) is the activation of each uniti (at level,,-) from which unitj receives input, and

wij is the weight (or strength) of the connection from each uniti to unitj. The activation of a

unit is simply a running average of its net input over time:

aj(t) = netj(t) = T netj(t) + (1- t) netj(t-1) (Equation 2)

where net j(t) is the time-average of the net input to unitj, netj(t) is the net input to unitj at

time (t), and T is a rate constant. This time-averaging function is what establishes the time
course of processing in this model. When 'r is small the unit's activation will change

slowly; with a larger T it will change more quickly. One feature of Equation 2 is that, if the
net input to a unit remains fixed, the unit's activation will approach an asymptotic value that

is equal to this net input. As a result, McClelland demonstrates that with a constant input to
the first layer in such a network, all of the units will approach an asymptotic activation
value. Moreover, this value is determined strictly by the input to the network and the

connections that exist between the units. Thus, given a particular input pattern, and
sufficient time to settle, the network will always reach a stable state in which each unit has

achieved a characteristic activation value.

One problem with the type of network used in the cascade model is that it is based on a

linear activation function. That is, the activation of a unit is simply a weighted sum of the

inputs it receives. It has been shown that networks which rely on linear update rules such

as this, even if they are composed of multiple layers, suffer from fundamental

computational limitations (cf. Rumelhart, Hinton, & McClelland, 1986 for a discussion).
To overcome this problem, a network must have at least one layer of units between the

input and output units that make use of a non-linear relation between input and output.
Another problem with the cascade model, especially within the current context, is that it

lacks any mechanism for learning. Both of these problems can be overcome if mechanisms

arc included that have been used in recent PDP models of learning.
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The first step is to introduce non-linearity into processing. Typically, this has been done

by using the logistic function to calculate the activation of a unit, based on its instantaneous

net input:

aj(t) = logistic(netj(t)) - (Equation 3)1 +enetj(t )

where nctj(t) is given by Equation 1. The logistic function introduces non-linearity by

constraining the activation of units to be between the values of 0 and 1 (see Figure 2). This
non-linearity provides important behaviors, which we will discuss below (see "Attentional

Selecdon"). However, as it stands, Equation 3 does not exhibit a gradual buildup of

activaton over time. The fu!l response to a new input occurs in a single processing step at

each level, and so the effects of a new input are propagated through the network in a single
sweep through all of its levels. The dynamic properties of the cascade model can be

introduced, however, if we assume - as the cascade model did - that the net input to a

unit is averaged over time before the activation value is calculated. This gives us the

following activation rule:

a1(t) = logistic( net j(t)) (Equation 4)

where net j(t) is defined as in Equation 2. The only difference between this activation rule

and the one used in the cascade model is that the time-averaged net input to a unit is passed
through the logistic function to arrive at its activation. We are still assured that the

activation value will approach an asymptote which depends only on the input pattern and
the connection strengths in the network. In fact, this asymptote is the same as the

activation that the unit would assume without the use of time-averaging (to see this,

consider the limiting case in which t =1).

A number of learning rules have been described for single and multilevel networks using

non-linear units. In the current model we used the generalized delta rule (also known as the

back propagation learning algorithm) described by Rumelhart, Hinton and Williams
(1986). Learning occurs by adjusting the connection strengths so as to reduce the

difference between the output pattern produced by the network and the one desired in
response to the current input. This difference is essentially a measure of the error in the

performance of the network. Error reduction occurs by repeatedly cycling through the
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following steps: (a) presenting an input pattern to be learned; (b) allowing the network to

generate its asymptotic output pattern; (c) computing the difference between this output

pattern and the one desired; (d) propagating information derived from this difference back

to all of the intermediate units in the network; (e) allowing each unit to adjust its connection

strengths based on this error information. By repeatedly applying this sequence of steps to

each member of a set of input patterns, the network can be trained to approximate the

desired output pattern for each input.

The non-linearity of the activation update rule discussed above is compatible with the back

propagation algorithm, which only requires that the activation function be monotonic and

continuous (i.e., differentiable). The logistic function satisfies this constraint.

Furthermore, so long as units are allowed to reach their asymptotic activation values before

error information is computed at the output level, then learning in this system is no different

from systems which do not include a time-averaging component.

Variability and the Response Selection Mechanism

Processing variability. Even when human subjects appear to have mastered a task, they

still exhibit variability in their response. This can be seen, for example, in the distribution

of reaction times for a given task. In order to capture this variability, and to be able to

model the variability of reaction time data, we introduce randomness into the model by

adding normally distributed noise to the net input of each unit (except the input units).

Response mechanism. In addition to the variability in the activation process, the model

also incorporates variability in the response mechanism. One successful way of modeling

response variability has been to assume that the choice of a response is based on a random

walk (Link, 1975) or a diffusion process (Ratcliff, 1978). In our adaptation of these ideas,

we associate each possible response with an evidence accumulator which receives input

from the output units of the network. At the beginning of each trial, all of the evidence

accumulators are set to 0. In each time step of processing, each evidence accumulator adds

a small amount of evidence to its accumulated total. The amount added is random and

normally distributed, with mean g. based on the output of the network, and with fixed

standard deviation o. The mean g. is proportional to the difference between the activation

of the corresponding unit and the activation of the most active alternative:



16 Cohen, Dunbar & McClelland

gi = a (acti - max-actji) (Equation 5)

where a determines the rate of evidence accumulation. A response is generated when one

of the accumulators reaches a fixed threshold. Throughout all of our simulations, the value
of (x was 0.1, the value of a was 0.1, and the value of the threshold was 1.0.

This response selection mechanism may seem different from the rest of the network. For
one thing, evidence is accumulated additively in the response selection mechanism,
whereas running averages are used elsewhere in the network. For another, the response
selection mechanism is linear, while the rest of the net is non-linear, and relies on this
nonlinearity. In fact, it is easily shown that the additive diffusion process can be mimicked
using linear running averages, by assuming that the response criterion gets smaller as

processing goes on within a trial. The impact of introducing non-linearity into the evidence
accumulator is less obvious. However, it need not exert a strong distorting effect, as long
as the threshold is within the lincar mid-portion of the accumulation function.

Attentional Selection

The role of attention in the model is to select one of two competing processes on the basis

of the task instructions. In order for this to occur, one of two task demand specifications
must be provided as input to the model: "respond to color" or "respond to word." We
assume that this information is available as the output from some other module and results
from encoding and interpreting the task instructions. Clearly, this is a highly flexible
process, that can adapt to the wide variety of information processing tasks humans can
perform. Our focus in this paper, however, is not on how task interpretation occurs or on
how decisions concerning the allocation of attention are made. Rather, we are concerned
with how information about the task and the corresponding allocation of attention
influences processing in the pathways directly involved in performing the task itself. By
focusing on the influences that attention has on processing, and specifying the mechanisms
by which this occurs, we hope to show how attention interacts with strength of processing
to determine the pattern of effects that are observed in the Stroop task.

Task information is represented in the model in the same way as any other information: as
a pattern of activation over a set of processing units. For this purpose, two additional units
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are included at the input level: one which represents the intention to name colors, and

another for reading words. A particular task is specified by activating one of these "task

demand" units. Task demand units modulate processing by adjusting the resting levels of

units in the two main pathways, putting task appropriate units in the middle of their

dynamic range and those for inappropriate units near the bottom where they will be
relatively insensitive. We don't know whether, in actuality, attention is primarily excitatory
(activating task-appropriate units), inhibitory (desensitizing inappropriate units) or - as we

suspect - some of both. In any case, we assume that the connection strengths from the

task demand units to intermediate units in each pathway are such that when the unit for a

particular task is active, it sets the resting level of units in the appropriate pathway to the

middle of their range, while units in the inappropriate pathway assume a more negative
value. The modulatory influence that these changes in resting level have on processing is

due to the non-linearity of the logistic activation function. To see how this occurs, let us

examine this function in greater detail.

Logistic Activation Function

1.0

0.9

U 0.4

0.2

0.0
-5 -4 -3 -2 -1 0 I 2 3 4 5

Net Input

Figure 2. The logistic function. Note that the slope of this function is greatest when the
net input is 0.0, and decreases when the net input is large in either the positive or
negative directions.
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As described by Equation 4, the activation of a unit is determined by the logistic of its net

input. From Figure 2 it can be seen that the logistic function has roughly three regions. In

the middle region - when the net input is close to zero - the relationship between net

input and activation is more or less linear, with a slope close to 1. In this region, the

activation of a unit is very responsive to changes in its net input. That is, changes in the net

input will lead to significant changes in the unit's activation. In contrast, at each end of the

logistic function the slope is dramatically reduced. In these regions - when the magnitude

of the net input is large, either in a positive or a negative direction - changes in the input to

a unit have a small effect on its activation. This feature was an important factor in our

choice of a non-linear activation function, allowing the responsiveness of units to be

modulated by adjusting their base levels of activation. This is accomplished by the

activation of the task demand units.

In principle, task demand units are assumed to have connections to the intermediate units in

each pathway, such that activation of a task demand unit drives the resting net input of units
in the appropriate pathway toward zero, and units in competing pathways toward more

negative values. Driving the net input of task-appropriate units toward zero places them in

the most responsive region of their dynamic range, whereas making the net input of task-

inappropriate units more negative places them in a "flatter" region of the activation function.

In the cur-:nt model, we implemented a simpler version of this general scheme. All

intermediate units were assumed to have a negative bias, so that they were relatively

insensitive at rest. Task demand units provided an amount of activation to intermediate

units in the corresponding pathway that offset this negative bias, driving their net input to

zero. Thus, task demand units had the effect of "sensitizing" units in the corresponding

pathway, while units in the inappropriate pathway remained in a relatively insensitive state.

Finally, we should note that the connections between each task demand unit and all of the

intermediate units within a given pathway are assumed to be uniform in strength, so that

activation of a task demand unit does not, by itself, provide any information to a given

pathway. Its effect is strictly modulatory.
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Simulations

We implemented the mechanisms described above in a specific model of the Stroop task.

In the following sections we describe how the model was used to simulate human

performance in this task. We start by describing some of the general methods used in the

simulations. We then describe four simulations which provide an explicit account of the

attributes of automaticity and how they relate to practice. These are followed by two

additional simulations which extend our consideration to issues concerning the relationship

between attention and automaticity.

Simulation Methods

All simulations involved two phases: a training phase and a test phase.

Training phase. The network was trained to produce the correct response when

information was presented in each of the two processing pathways. Training patterns were

made up of a task specification and input to the corresponding pathway (see Table I a). For

example, an input pattern was "red-color-NULL," which activated the red input unit in the

color pathway, the "respond to color" task demand unit, but did not activate any word input

units. The network was trained to activate the red output unit as its response to this

stimulus. Conflict and congruent stimuli were omitted from the training set, reflecting the

assumption that, in ordinary experience, subjects rarely encounter these kinds of stimuli.

At the outset of training, the connection strengths between intermediate and output units

were small random values. The connections between input units and intermediate units

were assigned moderate values (+2 and -2) that generated a distinct representation of each

input at the intermediate level. This set of strengths reflects the assumption that, early in

their experience, subjects are able to successfully encode sensory information (e.g., colors

and word forms) at an intermediate level of representation, but are unable to map these onto

appropriate verbal responses. This ability only comes with training. This initial state of the
network also allowed us to capture the power law associated with training, that we will

discuss below (see Simulation 3).
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Table la. Training Stimuli.

Task demand Color input Word input Output

a) color red "red"
b) color green "green"
LI) word RED "red"
d) word GREEN "green"

Table lb. Test Stimuli.*

Stimulus Type Task demand Color input Word input

Color naming:

task specification color
control color red
conflict colo- red GREEN
congruent color red RED

Word reading:

task specification word
control word RED
conflict word green RED

congruent word red RED

Only those stimuli for which "red" was the correct response are shown. The network was also tested
with the corresponding stimuli for which "green" was the correct response.

The influence of attention was implemented in the simplest way possibie. Bias parameters

for intermediate units and connection strengths from the task demand units were chosen so
that when a particular task demand unit was on, the intermediate units in the attended
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pathway had a base net input of 0.0, and were thus maximally responsive to input (see

above). Units in the unattended pathway had a much lower base activation. The value of
the base activation of units in the unattended pathway (determined by their negative bias)

reflected the effectiveness of filtering in a given task, and was allowed to vary from

experiment to experiment (see below).

In each training trial, an input pattern was presented to the network, and all of the units
were allowed to reach their asymptotic values.1 Difference terms were then computed by

comparing the actual activation with the desired activation value for each output unit. These
difference ierms were treated as error signals that were then used to calculate changes to the
connection strengths following the back propagation learning procedue (Rumelhart,
Hinton & Williams, 1986).2 All of the connections along the word and color processing

pathways were modifiable, and their values were set using the learning procedure just
described. However, the connections from the task demand units to the intermediate units
in each pathway, and the bias terms that established the resting activations of these units
were assumed to be unmodifiable. Training proceeded until the network was capable of

correctly processing all of the test stimuli (see below: "Test Phase").

One purpose of the model is to account for the relationship between practice effects and

automaticity. In the context of the Stroop task, it has been proposed that word reading is
more highly practiced than color naming (Brown, 1915; MacLeod & Dunbar, 1988:
Posner & Snyder, 1975). In order to model this difference in practice, we gave the

network differential amounts of training on the word and color patterns. Every word

pattern was presented in every epoch, while the probability of a color pattern being

presented in a given epoch was 0.1. Thus, on average, word patterns were seen ten times
as often as color patterns, and at any given point during training, the network had received

a greater amount of practice with word reading than col 'r naming.

Processing was deterministic during training; that is, units were not subject to noise. Individual
simulations using noise during training indicated that this did not significantly alter the results, and the
elimination of noise in this phase substantially reduced the length and number of simulations required to
anive at a normative set of results.

2 Connection strengths were updated after each sweep through the set of training patterns. Learning rate
was 0.1 and momentum was 0.0.
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Figure 3 displays the strengths on all of thc connections in the network at the end of

training. As expected, they were stronger in the word pathway than in the color pathway,
due to the greater frequency of word training.1

Test phase. The network was tested on the 12 input patterns corresponding to all possible
stimuli in a Stroop task in which there are two possible responses (e.g., "red" and
"green"). These patterns represented the control stimulus, the congruent stimulus, and the
conflict stimulus for each of the two inputs (red or green) in each of the two tasks (word
reading and color naming) (see Table lb). Presentation of a particular pattern consisted of
activating the appropriate input unit(s) and task demand unit. For example, one of the
conflict stimuli in the color naming task (the word GREEN in red ink) was presented by
activating the red color input unit, the "attend to color" task demand unit, and the GREEN
word input unit.

I We focus on frequency of training as the primary difference between word reading and color naming
because this has been the emphasis in the literature. However, other differences between these tasks might
also be important. For example, it seems likely that word reading is also a more consistently mapped task
than color naming: a particular sequence of letters is almost invariably associated with the word they
represent (even if the word itself has an ambiguous meaning); however colors are often associated with
words other than their name (e.g., red is associated with heat, embarrassment and "stop"). While this point
has not been emphasized with regard to the Stroop task, it is a well established finding that consistent
mapping leads to the development of automaticity, while variable mapping impedes it (e.g., Logan, 1979;
Shiffrin & Schneider, 1977). Our model captures this fact: the more consistently a stimulus is related to a
particular response, the stronger will be the connections for processing that stimulus. Although in this
paper we will focus on frequency (i.e., amount of practice) as a determinant of pathway strength, it should
be kept in mind that consistency of practice is an equally important variable that may be a significant factor
underlying the Stroop effect.
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RESPONSE
.red" "green"
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Figure 3. Diagram of the network showing the connection strengths after training on the
word reading and color naming tasks. Strengths are shown next to connections; biases
on the intermediate units are shown inside the units. Attention strengths (i.e., from task
demand units to intermediate units) were fixed, as were biases for the intermediate units.
The values were chosen so that when the task demand unit was on, the base input for
units in the corresponding pathway was 0.0, while the base input to units in the other
pathway was in range of -4.0 to -4.9, depending upon the experiment (see text).

Each test trial began by activating the appropriate task demand unit, and allowing the

activation of all units to reach asymptote. This put the network in a "ready" state

corresponding to the appropriate task. At this point, the intermediate units in the selected
pathway and all of the output units had resting activation levels of 0.5, while intermediate

units in the competing pathway were relatively inactive (activations of approximately 0.01).
The test pattern was then presented, and the system was allowed to cycle until the activation

accumulated from one of the output units exceeded the response threshold. A value of 1.0
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was used for the response threshold in all simulations. The number of cycles required to
exceed this threshold was recorded as the "reaction time" to that input. The system was
then reset, and the next trial began. Data values reported below represent the mean value of
100 trials run for each condition. A representative sample of the reaction time distributions
obtained in this way is given in Figure 4. This shows the skewed distribution typical of
human data and standard random walk models (e.g., Ratcliff, 1978).

Reaction Time Distribtuion

20.
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E
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0 Mi l l i ______________
610 624 638 651 665 678 692 705 719 733

Reaction Time
(msec = 12 "cycles + 206)

Figure 4. Distribution of reaction times for 100 trials of color naming (control
condition) from Simulation 1.

To simplify comparison between empirical reaction times and the model's performance, we
report simulation reaction times as transformed values. For each simulation, we performed
a linear regression of the simulation data on the empirical data. Simulation data are reported
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here as the number of cycles transformed by this regression equation. 1 Regression

equations are provided in the figure(s) accompanying each simulation.

Free parameters. We have undertaken a large number of simulation experiments, varying

different parametL.rs of the model and examining how these affected the model's ability to

account for the basic form of the empirical phenomena. Appendix A describes the

parameter values used in the reported simulations, as well as several trade-offs and

interactions between parameters that we encountered. In general, we strove to use a single

set of parameters for all simulations. However, in comparing the results of different

empirical studies it became apparent that cininally identical experimental conditions

sometimes produce rather different interference and facilitation effects. In particular, in

experiments where subjects have to say the color of the ink in which words are actually

written, interference effects may be more than twice as large as in experiments where color

and word information occur in physically different locations. It seemed likely that this

difference reflected differences in subject's ability to selectively modulate processing of

task-relevant and task-irrelevant information. To capture this, we allowed the strength of

the attentional effect to be adjusted separately for each simulation. This was done by
varying the resting activation level of units in the unattended channel, thereby placing them

in a more or less responsive state.

Strength of Processing

Simulation 1. The Basic Stroop Effect

The purpose of the first simulation was to provide an account for the set of empirical

findings that comprise the basic Stroop effect. These are displayed in Figure 5a, and are

described below.

In all cases, the intercept of the regression equation was positive, reflecting components of processing
(e.g. early visual processing and response execution) not simulated by the model. The intercept value for
all of simulations was in the range of 200-500 msecs.
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Word reading is faster than color naming. The time to read a color word is about 350-450

msec, whereas the time to name a color patch or a row of colored X's is 550-650 msec.

Thus word reading is about 200 msec faster than color naming (cf. Cattell, 1886; Dyer,

1973; Glaser & Glaser, 1982).

Word reading is not affected by ink color. Ink color has virtually no effect on the amount

of time that it takes to read the word. That is, reaction times to read the word in the conflict

and congruent conditions are the same as in the control condition. This phenomenon was

originally discovered by Stroop (1935) and can be seen in the flat shape of the graph for

word reading in Figure 5a. This finding is extremely robust and is very difficult to disrupt.

Even when the ink color appears before the word it does not interfere with word reading

(Glaser & Glaser, 1982). It is only when the task is changed radically that the ink color

will interfere with word reading (Dunbar & MacLeod, 1984; Gumenik & Glass, 1970).

Words can influence color naming. A conflicting word produces a substantial increase in

reaction time for naming the ink color relative to the control condition. The amount of

interference is variable, but is usually around 100 msec (e.g., Dunbar & MacLeod, 1984;

Glaser & Glaser, 1982; Kahneman & Chajczyk, 1983). This finding is also extremely

robust and nearly all subjects show the effect. Even when the word and the ink color are

presented in different spatial locations (e.g., the word is placed above a color patch) the

word still interferes with ink color naming (Gatti & Egeth, 1978; Kahneman & Henik,

1981). In the congruent condition the word facilitates ink naming, producing a decrease in

reaction time relative to the control condition (Hintzman et al., 1972). The amount of

facilitation can range from about 20 msec (Regan, 1978) to about 50 msec (Kahneman &

Chajczyk, 1983).

There is less facilitation than interference. Congruent stimuli have not been used as

extensively as conflict stimuli, but the general finding is that the amount of facilitation

obtained is much less than the amount of interference (Dunbar & MacLeod, 1984).
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Figure 5. Performance data for the standard Stroop task. Panel A shows daa from an
empirical study (after Dunbar & MacLeod, 1984). Panel B shows the results of the
model's simulation of this data.

Figure 5a shows the findings in a standard Stroop experiment (Dunbar & MacLeod, 1984).

Figure 5b presents the results of our simulation, which reproduces all of the empirical

effects. Thcse are explained as follows.

Word reading was faster than color naming in the simulation because differential amounts

of training led to the development of a stronger pathway for the processing of word
information than color information. The fact that the network was trained more extensively
with word stimuli than with colors meant that units in the word pathway had a greater

number of trials in which to increment their connection strengths (see Figure 3). Stronger

connections resulted in larger changes to the net input - and therefore to the activation -

of word units in each processing cycle (see Equations 1 and 2). This allowed activation to
accumulate at the output level more rapidly in the word pathway than the color naming

pathway. The faster the correct response unit accumulates activation (and competing units

become inhibited), the faster the response threshold will be exceeded. Thus, the strength

of a pathway determines its speed of processing.
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The difference in the strength of the two pathways also explains the difference in

interference effects between the two tasks. First, consider the failure of color information

to affect the word reading task. Here, activation of the task demand unit puts intermediate

units in the word reading pathway in a responsive state, so that information flows

effectively along this pathway. in contrast, because no attention is allocated to the color

pathway, units in this pathway remain in an unresponsive state, and accumulation of

information at the level of the intermediate units is severely attenuated. Furthermore,

because the connections from intermediate to output units are weaker in the color pathway,

what information does accumulate on intermediate units is transmitted to the output level

more weakly than information flowing along the word pathway. Both of these factors

diminish the impact that color information has on the network's response to a word. As

such, reaction time in the word reading task is only very slightly affected by the presence of

either congruent or conflicting color input.

Very different results occur when color naming is the task. Attention is now allocated to

this pathway, so that the intermediate units are placed in a responsive part of their dynamic

range, and information flows unattenuated to the output level. It is now the units in the

word pathway that are relatively unresponsive. However, because of the stronger

connections in the word pathway, more activation can build up at the intermediate unit

level. The amount of this accumulation is greater than it was for color units in the word

reading task.1 Furthermore, the connections from the intermediate to output units in this

pathway are also stronger than in the color pathway, so that what information accumulates

on the intermediate units has a greater influence at the output level. Thus, some

information flows along the word pathway even in the absence of the allocation of

1 As an example, consider the case in which the RED word input unit is activated. This has an excitatory
connection to the leftmost intermediate unit in the word pathway, with a strength of 2.63. In the absence
of input from the task demand unit (and ignoring the effects of noise), this intermediate unit receives a net
input of 2.63 + (-4 bias) = -1.37. After passing this through the logistic activation function, we arrive at
an asymptotic activation Gf .2 for this unit. This will be the amount contributed to the net input of the
"red" output unit. Nnw consider the situation for the color naming pathway. There, the strength of the
connection from the red input unit to the corresponding intermediate unit is only 2.20. In the absence of
task demand activation, the intermediate unit will have a net input of 2.20 + (-4 bias) = -1.8 which, when
passed through the logistic function, results in an activation of 0.14. Thus, in the absence of attention,
activation of an intermediate color unit is lower than that of a corresponding word pathway unit.
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attention. Although this flow of information is only partial, and is not sufficient to

determine which response is made, it is enough to affect the speed with which a response is

made, thus producing interference in the color naming task. This processing of

information in the word pathway without the allocation of attention captures the

"involuntariness" of word reading, and accounts for the interference and facilitation effects

that sre observed. All of these effects are attributable to the fact that the word reading

pathway is stronger (i.e., has stronger connections) than the color naming pathway.

The fourth finding is that the amount of interference is consistently larger than the amount

of facilitation. In the model there are two factors that contribute to this result. One is the

non-linearity of the activation function. This imposes a ceiling on the activation of the

correct response unit, which leads to an asymmetry between the effects of the excitation it

receives from the irrelevant pathway in the congruent condition, and the inhibition it

receives in the conflict condition. To see this more clearly, consider the idealized situation

depicted in Figure 6a.

1
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Figure 6. Mechanisms underlying the asymmetry between interference and facilitation
effects. Panel A shows the effects of equal amounts of excitation (E) and inhibition (I)
from a competing pathway on the asymptotic activation of an output unit. Panel B
shows the effects of these different asymptotic levels of activation on the time to reach a
particular level of activation (F = facilitation; I = interference).

In this figure, the activation function for the correct response unit is shown. Its asymptotic

activation is plotted for each of the three experimental conditions in a color naming trial.

Note that activation is highest in the congruent condition and lowest in the conflict

condition. This is because in the congruent condition, the irrelevant pathway contributes
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excitatory input to the response unit, increasing its net input; whereas in the conflict

condition it contributes inhibition, decreasing the response unit's net input. Note that,

although the increase in net input in the congruent condition is equal in magnitude to the

decrease in the conflict condition, the effect on the activation of the response unit is not

symmetric: inhibition has a greater effect than excitation. This is because this unit is in a

non-linear region of the logistic activation function. In this region, increasing the net input

has less of an effect on activation than decreasing it.1

Figure 6a shows the asymptotic activation values for the response unit in each of the three

conditions. Figure 6b plots the rise in response unit activation, over time, toward each of

these asymptotic values. Note that, at any given point in time, the difference in activation

between the control and conflict conditions is greater than the difference between the

control and congruent conditions. This shows that, throughout the course of processing,

inhibition has a greater influence than excitation on the accumulation of evidence at the

output level. Thus, the non-linearity of the logistic function, and its interaction with the

dynamics of processing help to produce the asymmetry between the size of interference and

facilitation effects observed in the simulation.

A second factor also contributes to the asymmetry in the magnitudes of interference and

facilitation. This is the basically negatively accelerating form of the curve relating activation

to cycles of processing. This negatively accelerating curve is an inherent property of the

cascade mechanism (time averaging of net inputs), and would tend to cause a slight

asymmetry in the interference and facilitation effects even if interference and facilitation had

exactly equal and opposite effects on asymptotic activation. However, this is a relatively

weak effect, and is not sufficient in and of itself to account for the greater than 2:1 ratio of

interference to facilitation that is typically observed.

I The reason that output activations fall in this region has to do with the nature of the activation function
and training in this system. Early in training, the connections to an output unit are small, so that the net
input it receives - regardless of the input pattern being presented - is close to 0.0, and its activation is
close to 0.5. If the correct response to a particular input pattern requires that output unit to have an
activation value of 1.0, then learning will progressively adjust its connections so that its activation shifts
from 0.5 to a value closer to 1.0 when that input pattern is present. The region between 0.5 and 1.0 (for
units whose output should be 1.0) is precisely the region of the logistic function that produces the
asymmetry between interference and facilitation observed in our simulations.
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Neither the logistic function nor the cascade mechanism was included in the model

specifically to produce an asymmetry between interference and facilitation. The logistic

function was included in order to introduce non-linearity into processing for the purpose oi

computational generality (see above: "The Mechanisms Underlying Learning and the Time

Course of Processing"), and to allow attention to modulate the responsiveness of units in

the processing pathways. The cascade mechanism was introduced in order to model the

dynamics of processing. The fact that these mechanisms led to an asymmetry between

interference and facilitation is a by-product of these computationally motivated features of

the model.

It is worth noting that most theories have been unable to account for this asymmetry in

terms of a single processing mechanism. In fact, several authors have argued that separate

processing mechanisms are responsible for interference and facilitation effects (e.g., Glaser

& Glaser, 1982; MacLeod & Dunbar, 1988). Although this remains a logical possibility,

our model demonstrates that this is not necessarily the case. We believe that the failure of

previous theories to account for this asymmetry in terms of a single mechanism has been

due to their reliance, either explicitly or implicitly, on linear processing mechanisms.

Simulation 2. Stimulus Onset Asynchrony Effects: Speed of Processing

and Pathway Strength

The results of the previous simulation demonstrate that the strength of a pathway

determines both speed of processing, and whether or not one process will influence

(interfere with or facilitate) another. In this simulation we demonstrate that pathway

strength - and not just speed of processing - is responsible for interference and

facilitation effects.

The speed of processing account of the Stroop effect assumes that the faster finishing time

of the word reading process is responsible for the asymmetry in interference effects

between word reading and color naming. If no other factors are assumed, then this account
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predicts that the Stroop effect can be reversed by presenting color information before the
word. 1

Glaser and Glaser (1982) tested this prediction and found no support for it: color
information failed to interfere with word reading even when color information preceded the
word by 400 msec. Indeed, they found no effect of colors on words over stimulus onset
asynchronies ranging from -400 msec (color preceding word) to 400 msec (word preceding
color). This is shown in the lower part of Figure 7a, which presents data from the word
reading condition of one of their experiments.
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Figure 7. Effects of varying SOA between word and color stimuli in the color naming
and word reading tasks. Panel A shows data from an empirical study (after Glaser &
Glaser, 1982). Panel B shows the results of the model's simulation of these effects.

We simulated the Glaser and Glaser experiment by activating the color input unit before and
after the word input unit. This was done at a number of cycles corresponding to the SOA's

I This requires spatial separation of color and word stimuli. This reduces, but does not eliminate the
standard set of effects (see Gaui & Egeth, 1978).
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used in the actual experiment. 1 In order to simulate the reduced interference and facilitation

effects observed at the 0 msec SOA in this experiment - in comparison with the standard

experiment using integral stimuli - we increased the size of the attentional effect for both

pathways by decreasing the resting net input to units in the unattended from -4.0 to -4.9.

The results of this simulation are presented in Figure 7b.

The model shows little interference of color on word, regardless of SOA, just as is seen in

Glaser and Glaser's data. It is true that when color precedes word, the model shows a

slight effect of color on word, but it is much smaller than the effect of word on color (the

maximum, and what appears to be the asymptotic amount of interference produced by

colors on words is substantially less than the amount of interference produced by words on

colors at the 0 msec SOA). In this way, the model concurs with the empirical data,

suggesting that differential speed of processing is not the sole source of interference

observed in the Stroop task. The model shows that interference is substantially influenced

by differences in strength of processing: when attention is withdrawn from the weaker

pathway, it is able to produce less activation at the output level than the stronger pathway is

able to produce when attention is withdrawn from it. As a result, weaker pathways

produce less interference, independent of their finishing time.

Nevertheless, there is a discrepancy between the model and the empirical data in Figure 7.

The simulation shows some influence of color on word reading when the color is presented

sufficiently in advance of the word, whereas the subjects do not. In fact, Phaff (1986) has

reported empirical data of Neumann's (1980) which indicate that, under some conditions,

early-appearing colors can produce a small amount of interference with word reading, just

as the model leads us to expect. It is unclear, therefore, whether this mismatch between the

simulation and the Glaser and Glaser data represents a limitation of the model, or the

involvement - in their experiment - of additional processes that are not central to the

I The number of cycles corresponding to each SOA was determined in the following manner. The
simulation was tested at the 0 msec SOA (color and word presented simultaneously, as in Simulation 1). A
regression was performed of these data on the Glaser ant: Glaser data at the 0 msec SOA. Other SOAs were
then divided by the regression coefficient to arrive at the number of cycles to be used for each SOA in the
simulation.
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Stroop effect. The latter possibility is suggested by another discrepancy between our

simulation and the empirical results.

In Glaser and Glaser's experiment, subjects showed very little interference in color naming

when the word appeared more than 200 msec in advance of the color (see upper part of

Figure 7a). In their original analysis this was attributed to strategic effects. More recently,

they have suggested that a process of habituation may be involved (W. Glaser, personal

communication). Our model does not include such a process, and this may be why the

simulation shows greater rather than lesser amounts of interference at the longer negative

SOAs. Note, however, that if habituation applies to color stimuli as it does to words, then

it would also tend to reduce any effect that colors have on word reading at the longer

SOAs. If this effect were small to start with, it might be entirely eliminated by habituation.

This may explain why Glaser and Glaser failed to observe any effect of colors on words at

long SOAs but, owing to lack of a habituation process in our model, this effect was

observed in the simulation.

In summary, although the model does not capture all aspects of the empirical data, it clearly

demonstrates our central point: that differential strength of processing can explain why

presenting a weaker stimulus before a stronger one fails to compensate for differences in

processing speed with regard to interference and facilitation effects.

Practice Effects

A primary purpose of this model is to show how the changes in strength that occur with

practice can lead to the kinds of changes in speed of processing and interference effects

observed for human subjects. These phenomena are addressed by the following two

simulations.

Simulation 3. The Power Law

Numerous studies have demonstrated that the increases in speed of processing that occur

with practice follow a power law (Anderson, 1982; Kolers, 1976; Logan, 1988; Newell

& Rosenbloom, 1980). This finding is so common that some authors have suggested that,

in order to be taken seriously, any model of automaticity must demonstrate this behavior

(e.g., Logan, 1988). The power law for reaction time (RT) as a function of number of

training trials (N) has the following form:
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RT = a + bNc (Equation 5)

where a is the asymptotic value of the reaction time, b is the difference between initial and
asymptotic performance, and c is the learning rate associated with the process. When this
function is plotted in log-log coordinates, reaction time should appear as a linear function of
number of trials, with slope c. Typically, RT is the mean of the distribution of reaction
times for a process at a given point in training. Recently, Logan (1988) has shown that, at
least for some tasks, the standard deviation of this distribution also decreases with training
according to a power law, and that this occurs at the same rate as the decrease in mean
reaction time (i.e., the coefficient c is the same for both functions). This means that, in
log-log coordinates, the plot of reaction times should be parallel to the plot of standard

deviatioais.

In order to assess the current model for these properties, we trained the network on the
color naming task for 100,000 epochs. At regular intervals, the network was given 100
test trials (control condition) on this task. Figure 8 shows the log of the mean reaction time
minus its estimated asymptote and the log of the standard deviation minus its estimated
asymptote, each plotted against the log of the number of training trials. Lines represent the

best fit to these data using a logarithmic regression; equations for each regression are also
shown, along with squared correlation between observed and predicted values. Both mean
reaction time and standard deviation are closely approximated by power functions of
training. Furthermore, the exponents of the two functions are very similar, and are within

the range of variation exhibited by Logan's empirical data.

Learning follows a power law for two reasons. First, learning in the network is error-
driven. That is, the amount that each connection weight is changed is based on how much
each output unit activation differs from its desired (target) value. Earl- in training this
difference is likely to be large (otherwise the problem would already be solved), so large
changes will be made to the connection strengths. As the appropriate set of strengths
develops, the error will get smaller and so too will the changes made to the connections in
each training trial. We should note, however, that although weight changes will get smaller
with pra,-tice, they will continue to occur as long as there is training. This is because target
values are taken to b: 1.0 for units which should be active, and 0.0 for all others. These
targets values can never actually be reached with finite input to units using the logistic
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activation function (see Figure 2). Thus there is always some "error" and therefore always
some additional strengthening of connections that is possible. However, this strengthening
will get progressively less with training, and therefore improvements in reaction time will
become less as well.

Reaction Time and Standard Deviation
as a Function of Training

1000

, Reaction Time
.. ' l ..jj Y=1304"6"XA-Q'87 RA2zO.99

100

(A
C, 10

IM

00

0 Standard Deviation
.1 y a366.8 * xA.-O.74 RA2 - 0.98

.01 , * ,oo , -'ooo" "';ooooo
10 10 00 100 100000

Epoch

Figure 8. Log-log plot of the mean and standard deviation for reaction time at various
points during training on the color naming task. Regression equations are for mean
reaction times and standard deviations separately, and are plotted as solid lines. Dashed
lines show the regression which best fits both sets of data simultaneously.

A second reason for the deceleration of improvements in reaction time with practice is that
as connections get stronger, subsequent increases in strength have less of an influence on
activation (and therefore reaction time). This is due to the non-linearity of the activation
function: once a connection (or set of connections) is strong enough to produce an
activation close to 0.0 or 1.0, further changes will have little effect on that unit. Thus,
smaller changes in strength compounded with the smaller effects that such changes have
combine to produce the pattern of doubly diminishing returns that is captured by the log-lo
relation between reaction time and practice.
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The arguments just provided apply only when representations in the next to last layer have
already been fairly well established, and training involves primarily the connections
between this layer and the output layer. In training a multilayer network from scratch using
back propagation, there is a long initial phase of slow learning, followed by one or more
periods of rapid acceleration, and then finally a phase which follows a power law.
Accordingly, when both the input and output layers of connections ir' our network had to
be learned, improvements in reaction time did not follow a power law from the start of
training. Adherence to the power law occurred only when meaningful and moderately
strong connections from the input units to the intermediate intermediate units were already
in place at the beginning of training. Although these input connections were modifiable -

and were augmented during training - their initial values had to be such that the network
could do the task by modifying only the output connections.

While some might take these findings as an indictment of the back propagation learning
algorithm, we suggest that they may reflect constraints on the applicability of the power
law: it may apply to only certain types of learning. Specifically, it may not apply to
situations in which an intermediate representation must be constructed to perform a task.
These may involve more than one phase of learning, as is observed in back propagation
networks when more than one layer of weights must be learned. Along these lines, we
have used a back propagation model to capture the stage-like character of learning reported
in a set of developmental tasks (McClelland, in press), and Schneider and Oliver (in press)
have begun to explore how back propagation nets can capture multiphase learning observed
for certain tasks in adults.

Simulation 4. Practice Effects and the Development of Automaticity

Having demonstrated that the current model conforms to standardly accepted laws of
learning, we now apply it to empirical data concerning learning, and the effect that learning
has on interference effects. MacLeod and Dunbar (1988) have shown that both speed of
processing and the ability of one process to interfere with (or facilitate) another are affected
by the relative amounts of training that subjects have received on each. In their
experiments, subjects were taught to associate a different color name to each of four
different shapes. During the training phase, the shapes were all presented in a neutral color
(white) and subjects practiced naming these for 20 days. Mean reaction times were
calculated for each day of training (these are shown below in Figure 9). At the conclusion
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of 1, 5, and 20 days of practice, subjects were tested with neutral, conflict, and congruent

stimuli in both the shape naming and color naming tasks.1 The results of this experiment

can be summarized as follows (these also appear in Fig, 12a, below):

" After 1 day (72 trials/stimulus) of practice on shape naming, this was still more

than 100 msec slower than color naming. The shapes had no effect on the time

to name the ink colors. However, the ink colors produced both interference and

facilitation in the shape naming task. The amount of interference was greater

than the amount of facilitation.

" After 5 days (504 trials/stimulus) of practice, shape naming was significantly

faster than on day 1. In addition, the shapes now interfered with color naming,

although they did not produce facilitation. The colors continued to produce

both interference and facilitation in shape naming.

• After 20 days (2,520 trials/stimulus) of practice, shape naming was slightly faster

than ink naming. The shapes produced a large amount of interference and a

small amount of facilitation in naming colors. The colors now produced much

smaller amounts of facilitation and interference in shape naming.

MacLeod and Dunbar argued that these data contradict the idea that the attributes of

automaticity are all or none. They suggested instead that a continuum of automaticity

exists, in which it is the relative amount of training on two tasks that determines the nature

of the interactions between them. The current model provides a mechanisms for this.

To simulate the MacLeod and Dunbar experiments, we used the network from the previous

simulations (which had already been trained on color naming and word reading), adding a

new pathway that was used for shape naming. This pathway was identical in all respects to

the two pre-existing ones, except that it had not received any training (see Figure 9). As

with the color and word pathways, it was given a set of initial cornection strengths from

1 For the shape naming task these were: (a) shapes in a neutral color (control condition), (b) shapes in a
color that was inconsistent with the shape name (conflict condition) and, (c) shapes in a color that was
consistent with the shape name (congruent condition). The same stimuli were used for the color naming
task, except that the control condition used a neutral shape (square).
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the input to the intermediate units that allowed it to generate a useful representation at the

level of the intermediate units, while small random strengths were assigned to the

connections between the intermediate and output units.

RESONSE
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INK COLOR WORD Aiding SHAPE ""n

Figure 9. The network architecture used to simulate the shape naming experiments
conducted by MacLeod and Dunbar (1988).

Using this expanded network, we examined how practice on a novel task (shape naming)
affects its interaction with another task that has already received a moderate amount of
training (color naming). The word pathway was not used in this simulation.

The simulation involved a series of alternating phases of training and testing, as in the
empirical study. During each training phase, the network was presented with only the two
control shape patterns. Both these patterns were presented in every training epoch.
Although only two shape stimuli were used in the simulation, the network received exactly

the same number of training exposures per stimulus that subjects received in the
experiment. During testing, the network was presented with the conflict and congruent as
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well as the control stimuli in each task condition (color naming and shape naming).

Reaction times to each stimulus type were recorded and averaged over each condition.

In the empirical study, test sessions gave subjects additional practice with the stimulus

items, including conflict and congruent stimuli. In order to accurately simulate these

circumstances, we allowed the network to continue to adjust its connection strengths (in

both the color and shape pathways) during each test phase. The network received exactly

the same number of exposures to each test stimulus as did human subjects. Furthermore,

these were blocked by task and presented in the same sequence as in the empirical study.
The network was tested after it had received the same number of training exposures per

stimulus received by subjects on days 1 (72), 5 (504) and 20 (2,520).

We simulated two components of the MacLeod and Dunbar data: 1) changes in the speed

of shape naming with practice, and 2) changes in interference effects between shape

naming and color naming. We consider each of these in turn.

Practice effects. According to the findings for other tasks in which practice leads to

automaticity, improvements in reaction time for shape naming should have followed a
power law. Mean reaction time for shape naming on each day of training are shown in

Figure 10a (solid squares). These data are reasonably well fit by a power function (see

Figure 10b). Figure 10a also shows the performance of the model as we have described it

so far (open triangles). The network exhibited significantly longer reaction times than

subjects early in training. This suggested that, early on, subjects might be performing the

task in a different way than they did later. This agrees with the general idea that flexible,

general purpose resources are required to perform novel tasks, and only with practice do

automatic mechanisms come into play. Strategic (e.g., Posner & Snyder, 1975),

controlled (Shiffrin & Schneider, 1977) and algorithm-based (Logan, 1988) processes
would all fit into this category. The present model was not intended to address the

mechanisms underlying such processes in detail. However, in order to explore the

influence that they might have, we added an auxiliary pathway to the model (see below).

We do not mean to suggest, in having added this pathway, that something as simple as our

implementation underlies strategic processes; rather, we included it as a way of

approximating the influence that we assume strategic processes would have on the time

course of information processing.
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Figure 10. Training data for the shape naming task in Experiment 3 of MacLeod and
Dunbar (1988), and the results of two simulations of this data. Panel A plots the
empirical data, and the results of simulations with and without the indirect pathway for
shape naming (see text). Panel B is a log-log plot of the empirical data and the results of
the simulation using the indirect pathway for shape naming, with regression lines
computed for each set of data independently.

The new pathway was comprised of connections from the intermediate units in the shape

pathway to a new set of intermediate units in a separate module, and connections from this

module to the model's output units (see Figure 11). We will call this new pathway the

indirect pathway, to distinguish it from the usual "direct" pathways used by the network.

The indirect pathway was meant to represent the involvement of a general purpose module

(or even set of modules) that has been committed to the shape naming process for the

current task. The connections in the indirect pathway were assigned a set of strengths that

allowed it to be used for shape naming, before the effects of training had accrued in the

direct pathway. This captured the assumption that such a mechanism can be rapidly

programmed to perform a given task. Because the indirect pathway relied on an extra set of

units, processing was slower than in the direct pathway. This conforms to the common

assumption that processing relying on general purpose mechanisms is slower than

automatic processing (e.g., Posner & Snyder, 1975).
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Figure 11. Detail of the pathways used for shape naming. Highlighted elements make
up the indirect pathway.

The results of adding the indirect pathway to the network are shown in Figure 10a: the
simulation's performance is now much closer to that of the subjects. Figure 10b shows
that the best-fitting power functions for the empirical data and the simulation are almost
identical. By comparing the model's performance with and without the indirect pathway, it
can be seen that as training progresses, performance relies increasingly on the direct
pathway. This is because, as the connection strengths in the direct pathway increase with
training, processing in this pathway becomes faster. Our finding that such a transition
from one processing mechanism to another follows a power law is similar to one described
by Logan (1988), in which the transition from an algorithm-based to a memory-based
process also produced a power law.



Control of Automatic Processes 43

Interference effects. Figure 12 shows the interference and facilitation effects that were

observed for the two tasks after 1, 5, and 20 days of practice on shape naming. Panel A

shows the empirical data from MacLeod and Dunbar (1988; Experiment 4), and panel B

the model's performance. Most importantly, we observe that the model captures the

reversal of roles of shape naming and color naming. For both the subjects and the

simulation, shape naming was initially much slower than color naming. Shape naming also

showed interference and facilitation from colors early on, while color naming was not

affected by shapes. At the final point in training, the relationship between the two

processes reversed: shape naming became the faster process, while its sensitivity to

interference was reduced and its ability to produce interference (with color naming)

increased. At the intermediate point, the two processes were more comparable in their

overall speed, and were able to influence each other.

In the model, shape naming started out as the slower process because, early in training, the

strength of the connections in this pathway were still much smaller than those in the color

pathway. The relationship between the two processes at this point was directly analogous

to the relationship between word reading and color naming in Simulation 1. Note,

however, that in this simulation color naming started out with the opposite role: initially, it

was the process that was insensitive to interference or facilitation, and that was able to

produce these effects. Color naming assumed this opposite role without any change in the

strength of connections in its pathway. This makes it clear that the absolute strength of a

pathway (i.e., the magnitude of connection strengths) is not the only relevant variable.

Relative strength, compared with a competing pathway, is also important in determining

whether or not a process will produce or be subject to interference in a Stroop-like task.

This is further substantiated by the patterns of performance at the end of training. By this

point, the strength of the shape pathway exceeded that of the color pathway. Accordingly,

shape naming became faster than color naming, insensitive to colors, and able to facilitate

and interfere with color naming.
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Figure 12. Interference and facilitation in the shape naming and color naming tasks after
varying amounts of training on shape naming. PaneL A shows the results obtained in
MacLeod and Dunbar's Experiment 3 (1988), after subjects had received 1, 5, and 20
sessions of practice. Panel B shows the simulation results at the corresponding points in
training.

Based on their data, MacLeod and Dunbar suggested that the Stroop effect can be
understood in terms of the relative position of competing tasks along a continuum of
automaticity, and that the position of the tasks along this continuum can be influenced by
training. The results of this simulation are consistent with such a view, and demonstrate
that the observed effects can be explained by increases in pathway strength that accompany
training. This is an important finding, for it suggests that the same process can appear to
be automatic (faster and able to influence a competing process) or controlled (slower and
influenced by a competing process), depending upon the context in which it occurs.

R
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There is, however, one respect in which the behavior of the model differs qualitatively

from that of the subjects in MacLeod and Dunbar's study. This concerns the degree of
interaction between processes that are of comparable strength. At the intermediate point in
training, the empirical data show that each task interfered substantially with the other. In
the simulation, though there was some mutual interference, the amount was rather small.
This was a robust property of the model: processes of comparable strength showed less
influence on one another than stronger processes did on weaker ones. Thus, it appears that
additional factors outside the scope of our model may be involved when competing
processes are of comparable strength. In fact, it is difficult to account for these findings
even on other, more traditional grounds.' In this light, the mutual interference effect
remains a general challenge to models of interference phenomena, and warrants further

research.

Allocation of Attention

Simulation 5. Attention and Processing

A primary reason for studying interference effects it that they can tell us something about
the requirements of different processes for attention. Thus, in the Stroop task it is assumed
that information in the irrelevant channel is not attended to. To the extent that this
unattended information can produce interference, it must not rely on attention to be
processed. The lack of a requirement for attention is one of the primary criteria for
automaticity (Posner & Snyder, 1975; Shiffrin & Schneider, 1977). It has often been
assumed that automatic processes not only do not require attention, but also that they are

I For example, mutual interference might be thought to reflect an underlying probability mixture of trials
involving unidirectional interference in each of the two directions. Thus, at an intermediate point in
training, the shape pathway might interfere with the color pathway for some stimuli (or subjects), while the
reverse is true for others. The effect of averaging over items (or subjects) would be that interference would
appear to be bidirectional. However, the size of this average should be less than the amont of interference
produced by colors early in training or by shapes late in training. This is because at the intermediate point
only a subset of stimuli (or subjects) would be contributing to interference in each direction, whereas
performance should be more homogeneous at the beginning and end of training. In fact, the data indicate
that mutual interference was of roughly the same magnitude as the interference effects at the extremes of
training. A probability mixture can not explain this finding.
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not influenced by attention (e.g., Posner & Snyder, 1975). Kahneman and Treisman
(1984) refer to this as the "strong automaticity" claim. They and others (e.g., Logan,
1980) have challenged this view, providing a large body of evidence that suggests that few

processes, if any, occur entirely independent of attention (e.g., Kahneman & Chajczyk,
1983; Kahneman & Henik, 1981; Treisman, 1960). For example, Kahneman and Henik

(1981) and Kahneman and Chajcyk (1983) showed that in the Stroop task the allocation of

attention can influence the degree to which word reading interferes with color naming.

On the basis of these and related findings, Kahneman and Treisman (1984) have argued
that automatic processes are subject to control by attention, although individual processes

may differ in their degree of susceptibility to such control. Our model presents a view of

automaticity that concurs with both of these points. In Simulation 1 we showed that while

processing can occur in absence of attention - capturing the "involuntariness" of automatic
processes - this autonomy was limited: even though words were processed without the
allocation of attention, thereby interfering with color naming, they did not determine the
response. Thus, even the strongest processes were controlled by attention. Furthermore,

the model shows that control by attention is a matter of degree: this was seen in the gradual

development of interference effects that occurred as strength of processing increased with
training in Simulation 4.

In the following simulations, we examined the relationship between requirements for
attention and strength of processing more directly. First, we looked at the effects that
reducing attention had on performance of the color naming and word reading tasks. The

amount of attention allocated to a task was represented as the activation value of the task
demand unit associated with that task. Figure 13a shows reaction times to control stimuli
in the word reading and color naming tasks, as a function of task demand unit activation for

each of the corresponding processes. Two phenomena are apparent. For a given level of
performance, color naming required more attention than word reading. However, both

tasks were influenced by the allocation of attention. Even the word reading process
showed degradation with reduced attention. Indeed, the fact that stronger pathways are

controlled by attention is what allows the model to perform a task using the weaker of two

competing pathways.
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Figure 13. Influence of attention on processing. Panel A shows differences in the
requirements for attention between color naming and word reading, and the effect on these
two processes of reducing activation of the task demand unit. Panel B shows the different
requirements for attention of the color naming process when it must compete with a
stronger process (word reading) and a weaker one (shape naming, early in training).

Although stronger pathways rely less on attention, requirements for attention are influenced

by more than just the absolute strength of a pathway; they are also affected by the

circumstances under which a process occurs. Figure 13b graphs the requirements that

color naming had for attention under three different conditions: no competing information,

and conflicting information from a weaker process (shape naming, early in training) and a

stronger process (word reading). In the two conflict conditions, color naming showed

very different requirements for attention, depending upon the strength of the competing

pathway. For a given level of performance, greater task demand unit activation was

required for competition with the stronger process than with the weaker process.

The performance of the model under these conditions demonstrates that, although

processing can occur in the absence of attention, all processes are affected by attention.

Like the other attributes of automaticity, requirements for attention vary according to the

strength of the underlying pathway, and the context in which the process occurs. The

stronger a process is, the less are its requirements for attention, and the less susceptible it is

to control by attention, increasing the likelihood that it will produce interference.
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Simulation 6. Response Set Effects: Allocation of Attention at the

Response Level

In the preceding simulations, we explored the role that attention plays in selecting
information from one of two competing pathways. Attentional selection occurred at the

level of the intermediate units, where information in the two pathways was still separate.

However, the attention allocation mechanism used in this model is a general one, and can
be applied to other levels of processing as well. In the following simulation, this

mechanism is used to select a particular set of responses at the output level of the network.
This provides an account for response set effects that have been observed in empirical

studies (e.g. Dunbar, 1985; Klein, 1964; Proctor, 1978).

Response set effects reflect the fact that information related to a potential response leads to

more interference (and facilitation) than information unrelated to the task. In the standard

Stroop experiment, information in the irrelevant dimension is always related to a potential
response. Potential responses are said to make up a "response set." For example, in the

color naming task, when the word RED is written in green ink, although "red" is an

incorrect response in that particular trial, it will be a correct response on other trials. Thus,
both "red" and "green" are in the response set. However, if the color blue never appears,

then the word BLUE is not in the response set, since it is never a response in the task.

Several studies - using both the color naming task (e.g., Proctor, 1978) and a picture

naming task (Dunbar, 1985) - have shown that words that are not potential responses

produce significantly less interference than words that are in the response set.

An explanation that is commonly offered for this effect is that members of the response set
are primed, either by instructions for the task (i.e, by informing the subjects of the stimuli

they will have to respond to) or through experience with the stimuli in the course of the task
itself (e.g., Kahneman & Treisman, 1984). The current model provides a related account

of response set effects, in terms of the selective allocation of attention to members of the

response set. The same mechanism that we used to allocate attention to a particular

pathway in previous simulations can be used to allocate attention to a particular response or

set of responses at the output level. In the previous simulations, allocation of attention to a

processing pathway placed the intermediate units in that pathway on a more responsive part
of their activation curve. This occurred through the activation of a task demand unit which

offset the negative bias on intermediate units in that pathway. The same mechanism can be
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implemented at the response level, by adding a negative bias to each of the output units,
and having the allocation of attention to a response offset the negative bias on the
appropriate output units.

We simulated the response set effects observed for a picture naming task used in an
experiment by Dunbar (1985). In this task, a word was placed in the center of a picture
and subjects were required to name the picture and ignore the word. Subjects' performance
in this task was almost identical to that in the standard color naming task: picture naming
was slower than word reading, the word bth interfered with and facilitated picture
naming, and the picture had no effect on word reading (for similar studies, cf. Fraisse,
1969; Glaser & Dungelhoff, 1984; and Lupker & Katz, 1981) In Dunbar's experiment.
there were five pictures of animals (horse, bear, rabbit, sheep, and cat2), and thus five
possible responses. Some of the word stimuli sed were potcntial responses (e.g.,
HORSE and BEAR), while others were animal words that were not in the response set
(e.g., GOAT and DONKEY). Dunbar found that words in the response set produced
significantly more interference than words which were not (see Table 2 below).

To simulate this experiment, the model used for Simulation I was extended in the
following ways. First, we increased the number of units at each level of processing in each
of the two pathways to ten (see Figure 14). One pathway was used to represent picture
naming, while the other was used to represent word reading. Five output units were used
to represent potential responses, and were labelled "horse", "bear", "rabbit", "sheep" and
"cat". The remaining five were used to represent words that were not part of the response

1 This mechanism was implicit at the output level in the previous simulations. To see this, imagine that
a negative bias was associated with each of the output units, just as it was with the intermediate units.
However, because both output units were in the response set, attention was maximally allocated to each.
This would offset the negative bias on both of them. That is, the bias terms on the output units would
always be equal to zero.

2 To reflect the analogy between picture stimuli in this task and color stimuli in the classic Stroop task,
we will refer to picture stimuli in lower case, as we have already done for color stimuli.
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set, and were labelled "goat", "donkey", "dog", "mouse" and "seal." The ten input units
in each pathway corresponded to these output units, and were labelled accordingly.1

RESPOSE

"homo bow 9goel "doOkey"

owooo

PIdws Word

N- -

Figure 14. The network used to simulate response set effects. The numbers that appear
inside each output unit are the bias terms that were assigned to these units during testing
(see text).

The new network was trained in a way that was analogous to training in Simulation 1.
Both pathways were trained on all ten of their inputs, with stimuli in the picture pathway

receiving one tenth the amount of training received by those in the word pathway. During
training, attention was allocated maximally to all of the units in both pathways, as was the

1 The network was trained on input to the non-response set color units but, because the corresponding
stimuli were not in the response set, they were never used in testing. These units were included strictly to
maintain symmetry between the two pathways in the network, so that differences in processing between
them could not be attributed to architectural asymmetries.
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case in previous simulations. During testing, however, several adjustments were made in

the allocation of attention. First, in order to simulate the somewhat smaller effects of
words on picture naming (Dunbar, 1985) than on color naming (Dunbar & MacLeod,

1984), we increased the size of the attentional effect at the level of the intermediate units,
much as we did in Simulation 2 (resting negative bias on all intermediate units of -4.5;

strengths from the task demand units to intermediate units of 4.5). 1 In addition, attention
was allocated differentially among the output units: non-response set units (e.g., "goat"

and "donkey") were given a partial negative bias (-0.1). This corresponded to the

hypothesis that, during testing, subjects allocate attention maximally to relevant responses

and disattend to irrelevant responses, though not completely (cf. Deutsch, 1977;
Kahneman & Treisman, 1984). The amount of negative bias applied to non-response items
was chosen to capture the empirical data as accurately as possible. However, the fact that

the size of the bias (-0.1) was smaller than the negative bias for intermedia, :.. n the

disattended pathway (-4.0) is consistent with empirical data demonstrating that selection by

stimulus set is easier than selection by response set (cf. Broadbent, 1970; Kahneman &

Treisman, 1984; Keren, 1976). The difference in bias between intermediate and output

units is also consistent with the view that subjects are less able to allocate attention

selectively to different representations within a module than to representations in different

modules (e.g., Navon & Miller, 1987; Wickens, 1984).

1 This difference does not seem to be due to a difference in strength between picture naming and color
naming, since both have comparable reaction times in the control condition (approximately 650 msec).
The comparability of naming times for colors and pictures was first noted by Cattell (1886).
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Table 2. Response Set Effects.*

Condition Dunbar (1985) Simulation

Response set conflict 781 777
Non-response set conflict 748 750
Control 657 664
Congruent 634 628

Empirical data are reaction times in milliseconds. Simulation data are cycles * 4.5 + 488.

Table 2 presents data from Dunbar's (1985) experiment as well as the results of the

simulation. In both cases, stimuli that were not in the response set produced less
interference than response set stimuli. In the model, this difference was due to the partial
negative bias on the non-response set output units, which simulated failure to maximally

attend to corresponding responses. This negative bias led to partial inhibition of these
units, reducing the degree to which they were activated by input stimuli. As a result, they
contributed less to competition within the response mechanism than output units that were
in the response set. The simulation demonstrates that attention can be allocated to the
response units using exactly the same mechanism that was used to allocate attention to a

pathway. When attention is allocated using this mechanism standard response set effects

are obtained.

General Discussion

We have shown that the mechanisms in a simple network-based model can explain many of

the phenomena associated with attention and automaticity. With regard to the Stroop effect,

the model shows that these mechanisms can capture a wide variety of empirical effects.
Among these are the asymmetry of interference effects between word reading and color
naming; the fact that interference effects are typically larger than facilitation effects (Dunbar
& MacLeod, 1984); that presenting the color before the word produces substantially less

interference than would be expected simply from differences in the speed of processing
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(Glaser & Glaser, 1982); and that words which are not in the response set produce less

interference with color naming than words which are (Dunbar, 1985; Klein, 1964). In

addition, the model exhibited many of the phenomena associated with the development of

automaticity, including reductions in reaction time and variance that follow a power law
(Logan, 1988; Newell & Rosenbloom, 1980); gradual development of the ability to
produce interference accompanied by a reduction in susceptibility to interference (MacLeod
& Dunbar, 1988); and a reduction of the requirements for attention as learning occurs

(Logan, 1978; Shiffrin & Schneider, 1977).

The model provides a common explanation for these findings in terms of the strength of

processing pathways. This account goes beyond many other theories of automaticity by
describing an explicit set of processing mechanisms from which the empirical phenomena
are shown to arise. These mechanisms provide a basis for learning, the time course of
processing, and the influence of attention. Several important features of automaticity
emerge from this account, including the fact that the properties of automaticity are

continuous, and that their emergence depends largely on the strength of a process relative to
the strengths of competing proc."sses.

The model is not perfect in its present form. For example, it does not account for the fact

that presenting a word sufficiently in advance of the color reduces interference (Glaser &
Glaser, 1982). It also shows less interaction between processes of comparable strength

than the available data seem to indicate (MacLeod & Dunbar, 1988). Some of these
shortcomings may be due to the fact that the model does not include mechanisms for the
processing of strategic components in a task (e.g., interpretation of task demands,
evaluation of the response set, compensation for a preceding conflicting stimulus, etc.).
Further research and development are needed in order to capture these and other aspects of

performance. Nevertheless, the successes of the model to date indicate the usefulness of
the general approach. In the remainder of this discussion we consider the implications of
the approach for issues beyond those directly addressed in our sinulations.

Reconsidering Controlled and Automatic Processing

The model demonstrates that differences in interference effects are not sufficient to make a
distinction between different types of processes. Often it has been assumed that if one
process interferes with another, the process that produces interference is automatic and the
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other is controlled. However, the model shows that this disparity can be explained by
differences in the strength of two processes that use qualitatively identical mechanisms.

Furthermore, both the model and recent empirical evidence demonstrate that the same

process can - according to interference criteria - appear to be controlled in one context

and automatic in another.

In this respect, our model provides a very different account of the Stroop effect than other

models, such as one described by Hunt and Lansman (1986; also see Reed & Hunt,
1986). Their model is based on a production system architecture that is a modified version

of the one used in ACT* (Anderson, 1983). Their model distinguishes between controlled
and automatic processing based on the manner in which one production influences the
firing of others. In controlled processing, one production activates a representation in
working memory that matches the criteria for another, increasing the activation valve for

that production, and hence its likelihood of firing. In automatic processing, however,

productions can influence each other without relying on working memory, through the
direct spread of activation from one production to another. In the Hunt and Lansman
model, color naming is assumed to be a controlled process, which relies on working
memory. As such, it is highly influenced by the contents of working memory. In
particular, in the conflict condition, when there is competing word information in working
memory, processing is slowed resulting in Stroop-like interference. In contrast, word
reading is assumed to be automatic, and thus to occur largely through the direct spread of
activation between production rules. T",s makes it less susceptible to influence by the

contents of working memory.

The Hunt and Lansman model provides an explicit account of the nature of controlled
processing (in terms of working memory and productions), which our model does not.
However, it faces serious limitations. First, it fails to capture some of the basic features of

the Stroop task: in the control conditions, color naming and word reading are the same
speed. Furthermore, the color can interfere with and facilitate word reading, neither of
which occur in empirical studies. It is not clear whether these failures to fit the empirical
data result from fundamental limitations in their overall approach or the particular
implementation they report. Most importantly, however, this model accounts for
differences in interference effects between color naming and word readin, by assuming that
these represent different types of processes: one is controlled while the other is automatic.
By making such qualitative distinctions, it seems that this approach can not - in principle



Control of Automatic Processes 55

- account for the MacLeod and Dunbar findings, which show that color naming can
appear to be controlled in one context but automatic in another (i.e., when it is in
competition with a less practiced task). In contrast, our model accounts for these findings
in terms of differences in the relative strengths of two competing pathways, both of which
might be considered to be automatic.

Although our model indicates that there is a continuum of automaticity, it does not reject the
existence of controlled processing. At the extreme low end of the automaticity continuum,
where there is no pre-existing pathway to perform a task, it is clear that processing must
occur in a very different way. Consider, for example, a subject who is told to say "red"
when a particular random figure is presented, and to say "green", "blue", etc. for each of
several other shapes. Initially, the subject will lack the relevant connections for performing
the task. At this point, the task might be performed with the assistance of the experimenter
(e.g., by being reminded of the color word that corresponds to the shape on the screen).
The subject might try to learn each correspondence, using verbal' associations to the shapes
(e.g., orange is the name of the shape that looks like Florida) or other mnemonics. We
assume that such processes rely on indirect pathways that can be used to establish at least a
few arbitrary associations relatively quickly; but that processing in such pathways is slow
and requires effort to maintain. At the same time, as practice progresses and the subject

receives feedback regarding responses, connections would be starting to build in a pathway
that will ultimately allow the shape to directly activate the correct response, without
recourse to indirect verbal and/or mnemonic mediation. While learning occurs more
gradually in such direct pathways, it leads to processing that is faster and stronger than is
possible using indirect pathways.

Thus, while subjects can respond correctly without external help after only a few trials, we
assume that the direct pathway would generally not at this point be sufficient to produce the
response. The activation of a response would be based on the combination of information
from both the direct and indirect mechanisms, with the relative importance of the direct
pathway growing steadily over trials, and the contribution made by the indirect pathway
diminishing. In summary, what we see during the early phases of practice may reflect a
gradual transition from a reliance on indirect to direct pathways.

There is a partial correspondence between our direct/indirect distinction and the traditional
distinction between controlled and automatic. As already noted, a process based on indirect
pathways would have all the earmarks of what is typically called a controlled process: it
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would be slow, it might consist of a series of steps which can be disrupted or interfered

with, and it might depend on declarative (verbal) memory (e.g., "Florida is orange"), or

other explicit mnemonics requiring effort and the allocation of attention. On the other hand,

at high extremes of practice, direct performance would correspond closely to what typically

has been called automatic: processing would be much faster, less susceptible to

interference, more capable of producing interference, and less influenced by the allocation

of attention. In between, however, the correspondence between these distinctions breaks

down. As the simulations presented in this paper demonstrate, a process that is completely

direct can - under some circumstances - exhibit all of the properties usually ascribed to a

controlled process. Thus, we propose that processes which have previously been

classified as controlled might more profitably be segregated into those which are direct and

those which are indirect. Within the range of direct processes, there would be a continuous

spectrum of pathway strengths that span the range of different degrees of automaticity.

Table 3 illustrates the correspondence between traditional usage and the terms proposed

here.

Table 3. Types of Processing

Novel Tasks Highly Practiced Tasks

Indirect ~ (Indirect withvery weak direct) - Weak Direct - Strong direct

Controlled -- Controlled - Automatic

The model provides an explicit account of direct processes, and shows how changes in the

strength of these processes - which result from practice - can lead to seemingly

qualitative changes in performance. The model is less explicit about indirect processes.

Because our focus was on the nature and interaction of direct processes, indirect processes

were included in only one simulation (Simulation 4), in order to capture performance of the

shape naming task early in training.
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The significant aspects of our implementation of an indirect process (see Simulation 4)
were that it relied on an extra module in the processing pathway, and that the connections in
this pathway were available early in training, before connections had developed in the direct
pathway. This implementation captured the slower dynamics of indirect processes that
commonly have been observed. However, it did not capture other features of indirect
processes, such as their flexibility, and the general purpose nature of the mechanisms
involved. Nevertheless, there are extensions of our model that might capture some of these
features. For example, it would be possible to replace the single additional module used in
Simulation 4 with a series of modules - perhaps participating in a number of different
processing pathways - that had highly adaptive but quickly decaying connections. These
properties would capture the flexible, general purpose, but slower and less stable nature of
indirect processing. While PDP research in this area is just beginning, a number of PDP
models that use such mechanisms have already begun to appear (e.g., Schneider, 1985;
Schneider & Detweiler, 1987; Hinton & Plaut, 1987).

Attention and the Control of Processing

We have argued that an important difference between our direct/indirect distinction and the
traditional dichotomy between controlled and automatic processing is that in our distinction,
processes of either type can exhibit performance characteristics traditionally associated with
controlled processing - such as slower speed and susceptibility to interference. The same
difference can be found between these two approaches concerning their claims about the
attentional con"l of nrocessing.

At the heart of the theoretical distinction between controlled and automatic processing are
two basic assumptions: controlled processing depends on the allocation of attention;
automatic processing occurs independently of attention. As we discussed in Simulation 5,
there is reason to believe that few, if any processes are entirely immune to the affects of
attention. In the simulations presented here, even the strongest pathways - in which
processing exhibited all of the other attributes of automaticity - processing was affected
by the allocation of attention. For example, in Simulation 1, although processing in the
word pathway occurred without the allocation of attention - leading to interference with
color naming - this processing was only partial, and was insufficient to determine which
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response was made. Simulation 5 showed that the word reading process was directly
influenced by changes in the allocation of attention.

The proposal that direct processes are subject to attentional control is quite different from
the proposal that a particular task is subject to attentional control. Thus, others (e.g.,

Shiffrin, in press) have attempted to explain the fact that automatic processing tasks such as
word reading are subject to attentional control by arguing that behavior relies on numerous
processes, some of which are automatic, and some of which may be controlled. In this
view, control over the performance of a task could be explained by the allocation or
withdrawal of attention from the controlled processes involved, preserving the
independence of the automatic processes from the effects of attention. While we do not
dispute the claim that behavior is composed of many component processes, our model
asserts that all of these processes may be subject - in varying degrees - to control by
attention.

Attention as the Modulation of Processing

Given that all cognitive processes are subject, in some degree, to attentional control, the
question arises as to how this control is achieved. Attention is implemented in the model as
the modulation of processing in a pathway. This occurs by input from attention (task
demand) units, which cause a shift in the responsiveness of units in a processing pathway.

Attention uses exactly the same processing mechanisms as the other components of the
model. The connections from the attention units to the units in a processing pathway are of
the same type as the connections within the pathway itself, and attentional information is
represented in the same way as any other information in the network: as a pattern of
activation over a set of units. As such, the input that a pathway receives from the attention
units is qualitatively the same as input received from any other source of information in the
network. Attention can be viewed simply as an additional source of information which
provides a sustained context for the processing of signals within a particular pathway.
Thus, attentional mechanisms are not given special status in the model and, in general, an
attentional module can be thought of as any module that has a set of connections that allow
it to modulate processing in another pathway. There may be many such modules within a
system, a given module may modulate one or many pathways, and it might even participate
directly in one set of processing pathways, while it serves to modulate others. This view
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of attentional control is similar to the "multiple resources" view that has been expressed by

others (e.g., Allport, 1982; Hirst & Kalmar, 1987; Navon & Gopher, 1979; Wickens,

1984).

Our implementation of attentional modulation is different from several other recent accounts

of attention. In Anderson's ACT* theory (1983), attention is related to the competition for

representation in working memory rather than the modulation of processing in otherwise

automatic pathways. Schneider (1985) provides an account of attention as the modulation

of information in a PDP network. However, his model uses a mechanism for attentional

modulation (multiplicative connections) that is qualitatively distinct from other types of

processing in the network, unlike the model we have presented.

The notion of attention as a modulator, together with the idea that processing is continuous

and that the resulting activations are graded in strength, has a long history in the attention

literature; the idea is essentially the same as that suggested by Treisman (1960). Treisman

claimed that messages outside of the focus of attention were not completely shut out; rather,

the flow of information was simply "attenuated" on the unattended channel. This is exactly

what happens in our model. Indeed, the very same mechanisms of pathway modulation

that we have used to implement task selection ii. the Stroop task (color or word) could be

used to implement channel selection in dichotic listening (e.g., Treisman, 1960), spatial

allocation of attention (e.g., Kahneman & Henik, 1981), category search (e.g., Schneider

& Shiffrin, 1977; Shiffrin & Schneider, 1977), or other tasks involving selective attention.

A number of these phenomena have begun to be explored productively using the PDP

framework (e.g., Mozer, 1988; Phaff, 1986; Schneider & Detweiler, 1987). For

example, Mozer (1988) has addressed the spatial allocation of attention using PDP

mechanisms similar to the ones we have described. By introducing a network of units

corresponding to retinal locations (rather than feature dimensions), and having attention

bias units representing particular locations, attention can be allocated to specific locations.

As in our model, information that is in the focus of attention is processed to a greater

degree than information that is not in the focus of attention. Extr .,on of our model along

these lines would provide a means for simulating spatial allocation of attention in the Stroop

task (e.g., Kahneman & Henik, 1981).

Finally, with regard to the mechanisms of attentional modulation, an important general

issue is whether attention facilitates processing within the attended pathway, suppresses it
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in the unattended pathway, or both. Our framework is, in principle, agnostic on this issue;

attention could be implemented either as a facilitative or an inhibitory effect, or a

combination of both. In the simulations we presented, however, attention had primarily a

facilitative effect: task specifications put units in the attended pathway in a more responsive

portion of their dynamic range. This succeeded in capturing the central phenomena of the

Stroop effect, and the relationship between practice, automaticity and attention that we set

out to explain. However, there are reasons to suspect that effort is also required to filter

out potentially interfering messages. For example, processing is typically slower on

control trials if these are mixed with interfering trials. One way to account for this is to

assume that attention is required both to suppress the unattended channel and to enhance

processing in the attended one, and that suppressing one requires resources that take away

from the ability to facilitate the other. The modelling framework we have described ccLild

be used to explore - in simulations - which of these explanations can best account for

the relevant empirical data.

Continuous Nature of Processing

The assumption that information is graded and is propagated continuously from one level to

the next distinguishes our model from discrete stage models, in which processing must be

complete at one stage before information becomes available to others. In the model

presented here, information at one level is continuously available to subsequent levels. As
such, a process need not be completed in order for it to affect performance. It is precisely

the partial processing of information in the stronger of two pathways that produces

interference and facilitation effects.

In this respect our model is similar to one proposed by Logan (1980). Both models make
use of continuous processing mechanisms, and explain interference (and facilitation) effects

in terms of the relative strength of the pathways used by competing processes. According
to Logan's model, "evidence is assumed to accumulate over time in some composite
decision process until a threshold is exceeded and a response is emitted" (p. 528, Logan,
1980). Different sources of evidence (e.g., different stimuli, or different stimulus

dimensions) are weighted so that evidence accumulates from each at different rates. This
model accounts for the Stroop effect by assigning stronger weights to word reading than to

color naming. The strength of the connections in a pathway in our model are analogous to

the weights assigned to a process in Logan's model. In both models, attention acts by
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modulating the effectiveness with which information accumulates from each process in a
manner that is responsive to the demands of the current situation.

However, our model differs from Logan's in several important respects, some of which
lead to significant differences in performance. First, Logan's model is a linear model, with
respect to the way in which information accumulates both as a function of time and as a
function of pathway strength. The processing mechanisms in our model are non-linear in
both of these respects. This allows it to account for the asymmetry between interference
and facilitation. Logan's model can not account for this finding. However, perhaps the
most important difference between the two models is that Logan's model does not include
any mechanisms for learning. The weights associated with automatic processes are fixed.
One of the primary strengths of our model is that it can directly address the relationship
between training and automaticity in terms of an integrated set of learning and processing
mechanisms.

Strength and Instance-based Accounts of Automaticity

The model presented in this paper is based on the assumption that direct processes develop
through the strengthening of connections between processing units. In this respect, it is
one of a general class of models that explain learning in terms of a strengthening process.
An alternative approach to learning and automaticity is instance based (e.g., Hintzman,
1986; Logan, 1988). According to instance theory, each exposure to a stimulus is
encoded separately in memory. In Logan's model, both encoding as well as the retrieval of
stimulus-related instances is obligatory. Retrieval times for individual instances are
normally distributed, with the first instance retrieved controlling the response. Logan has
demonstrated that instance theory accurately predicts practice effects in non-conflict tasks,
accounting for the fact that both the mean and the standard deviation of reaction times
decrease according to a power law with the number of trials (i.e., instances encoded). The
theory also predicts that the exponent for both functions should be the same.

A number of strength-based accounts have provided fits to the power law for mean reaction
time (e.g., Anderson, 1983; Schneider, 1985), and the model we presented satisfies the
additional constraint that standard deviation decrease at the same rate as mean reaction time.
However, Logan (1988) has expressed other concerns about strength-based theories of
learning. For example, he claims that strength-based accounts must rely on fixed
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prototypes: it ;s the strengthening of the connection between "generic stimuli" and "generic
responses" that constitute learning in such systems. This criticism applies primarily to

theories using discrete, or "local" representations of stimuli. Elsewhere (McClelland &
Rumelhart, 1985) it has been shown that this limitation of the strength-based approach can

be overcome with the use of distributed representations. In such systems, memory for an
event is not encoded in a single connection between a generic stimulus and a generic
response, but in the strengths of a set of connections involving a number of different units

which are used to provide overlapping but nevertheless distinct representations of

individual stimuli and responses. In the current model, local representations were used.
However, in preliminary investigations using distributed representations we have had no
difficulty reproducing the basic interference phenomena (resulting from unequal amounts of
training) reported in this paper. These effects appear to be general to cascaded PDP
networks ?ornposed of continuous non-linear processing units.

For the moment, it appears that both instance- and strength-based theories are equally able
to explain learning behaviors. However, it is not clear how an instance-based account will
explain some of the interference phenomena we have addressed. As an assumption of his
theory, Logan states that "attending to a stimulus is sufficient to retrieve from memory
whatever has been associated with it in the past" (Logan, 1988, p.493). That is, retrieval is
obligatory and, by implication, unmodulated. Interference is produced in this system when
retrieved information associated with a stimulus conflicts with the desired response. and
this information is retrieved before the relevant information. As with the simple speed of
processing account, this suggests that given sufficient time for retrieval, colors should
interfere with word reading as much as words do with color naming. However, we know

from Glaser and Glaser's (1982) data that this is incorrect. Thus, instance theory faces the
same difficulties that simple speed of processing accounts face in explaining Stroop
interference effects.

More generally, as instance theory is currently developed, it does not specify mechanisms
for attentional influences on behavior. Logan (1988) suggests that "the retrieval process
can be controlled by manipulating retrieval cues or stimulus input, or both, and the
subsequent decision process can be inhibited before it results in an overt response" (Logan,
1988, p. 513). However, no mechanism is provided for these processes, nor has it been
demonstrated whether these processes can account for the interactions between interference
and practice effects that we have addressed in this paper. While we have not provided a
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mechanism which determines how and where attention will be allocated, we have specified

a merhanism by which the allocation of attention can influence processing, and we have

shown how this mechanism interacts with learning.

Resources and Capacity

A final issue concerns the notions of processing resources and capacity limitations. The

model instantiates processes similar to the "multiple resources" view that has been

expressed by others (e.g., Allport, 1982; Logan, 1985; Navon & Gopher, 1979; V% ickens,

1984), and to the notion of functional cerebral distance described by Kinsbourne and Hicks

(1978). These theories share the view that performance of a task typically involves a

number of different processes, which in turn depend on a multiplicity resources. They

predict that two behaviors will compete for processing capacity, and may interfere with one

another to the extent that they rely on the same resources for different purposes. Our

approach suggests ways in which we can begin to think, in more specific terms, about the

nature of these resources, and how limitations in their capacity can affect performance.

Thus, the modules that make up processing pathways can be thought of as a set of

resources within the system. These resources are shared by two or more processes to the

extent that their pathways intersect - that is, they rely on a common set of modules. in the

model, when two signals to be processed by a particular module are disparate (i.e, they

involve different patterns of activation), they will compete for representation within that

module. In this sense, the processing capacity of that module, or resource can be thought

of as being limited - that is, it cannot fully support the processing of both signals at once.

Schneider (1985; Schneider & Detweiler, 1987) has presented a similar view of capacity

limitations in terms of cross-talk within modules (also see Navon & Miller, 1987).

Although we have not pursued a quantitative analysis of capacity in this paper (see

Rosenfeld & Touretsky, 1987 for an example of how this can be done in PDP systems),

the model showed that when information from two sources converged on a common

module (the response module of the network), interference occurred. We have obtained

similar results in other simulations, in which two stimuli (e.g, two words) processed

concurrently within the same pathway also led to interference.

As in the multiple resources view, our account of interference effects focuses on the

capacity limitations of modules directly involved in a processing pathway; that is, modules
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which lie in the pathway along which information flows from input to output. However,

the model also suggests ways in which to think about other types of capacity limitations.

For example, the attention module did not lie directly along one of the processing pathways

in the network. Nevertheless, it played an important role in processing: Simulation 5

showed that all processes relied, to a greater or lesser extent, on the allocation of attention.

For a given process, this required that a particular pattern of activation be present in the

attention module. This pattern was different for d1ferent processes, so that any attempt to

specify more than one process would lead to competition of representations within the

attention module. From this perspective, the capacity of the attention module can be seen

as limited - it may not always be possible to allocate attention maximally to all processes

at once. Because stronger processes have weaker requirements for attention (see

Simulation 5), such processes may be less susceptible to capacity limitations in the

corresponding attentional module. This is consistent with the traditional notion that

automaticity is associated with greater independence from capacity limitations of attentional

resources. However, our approach allows that there may be more than one attentional

resource (module) within the system, and that different processes may rely on different

such modules. As such, the extent to which limitations in attentional capacity will affect

performance will depend on the particular processes involved in performance of the task (or

set of tasks), the extent to which these processes rely on attentional resources, and whether

the attentional resources are the same or different for the various processes involved.

The significance of different sources of capacity limitations (e.g., those arising directly

within a pathway, or within associated attentional modules) are in need of further

clarification, both theoretically and empirically. However, we would like to re-emphasize,

in this context, that attentional information is rot qualitatively different from other

information in our framework. The competition between patterns of activation within an

attentional module is analogous to the competition that can occur between patterns of

activation in any other module. This suggests that modulatory resources, such as the

attentional module in our model, may be governed by the same sorts of principles and

constraints that govern more local resources within the system.

Conclusion

The model that we have presented provides not only an account of the empirical data on the

Stroop effect, but also a more general model of processing in highly practiced tasks and its
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relation to attention. Like other theorists (e.g., Kahneman & Treisman, 1984; Logan,
1980; Schneider, 1985), we have noted that there are many problems with an all or none
view of automaticity. Our model suggests that a more useful approach is to consider

automaticity in terms of a continuum based on strength of processing. We have outlined a

set of mechanisms that can produce gradual and continuous strengthening, and we have
shown how thest, mechanisms can account for a variety of empirical phenomena
concerning automaticity. In particular, these mechanisms capture the continuum that
appears to exist in the attributes of automaticity, and relate this continuum directly to the
effects of practice. Differences in practice lead to differences in the strength of processing,

and this makes it possible to capture asymmetries of performance such as those observed in
the Stroop task. The model also makes the point that Stroop-like effects can arise from the
competition between two qualitatively similar processes - which differ only in their

strength - questioning the traditional view that interference effects can be used reliably to

distinguish between controlled and automatic processes. Finally, the model suggests ways
in which it may be possible to characterize the notion of capacity in greater detail than has

occurred up to now.

The mechanisms used in this model show how the principles of continuous processing -

expressed in terms of the PDP framework - can be applied to the study of attention and

the control of what we have called direct processes. A challenge for our model, however,

and for the PDP approach in general is to characterize the mechanisms underlying indirect
processing. We see this as an important direction for future research.
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Appendix A: Parameters of the Model

Performance of the model depended upon a number of different parameters. Several of
these were tightly constrained by the data, while the values of others seemed to be less

critical. Here, we review all of the parameters that were relevant to the simulations
reported, and provide a rationale for how the value of each was chosen, how critical that
value was and, where appropriate, which other paria.neters it interacted with.

Ratio of training frequencies: The network used in the first two simulations was

trained on words and colors in a 10:1 ratio. This value was chosen to capture both the
difference in the speed of processing between word reading and color naming and the size
of the interference and facilitation effects observed for color naming (see Figure 5a). This
parameter interacted primarily with the magnitude of the attentional influence in the model,
the parameters of the response mechanism, and the maximum response time (see
descriptions below). The actual value of this parameter did not appear to be critical, and
values ranging from 5:1 to 20:1 gave comparable results, providing the size of the

parameters mentioned above were adjusted to compensate. The actual value was not
considered to be crucial, but the asymmetry in training that it represented is theoretically
important: it is differential amounts of training that lead to differential pathway strengths.

This is consistent with the common assumption that word reading is more highly practiced

than color naming.

Learning rate: This parameter scaled the size of the changes made to connection weights
in each learning trial. Its value was tightly constrained by the MacLeod and Dunbar (1988)
data. The exact same number of training trials per stimulus were used in the simulation as
were used in the empirical study. We chose a learning rate that - given this number of
trials - produced the closest fit to the interference data at each test point. This parameter
was the same for all of the connections in each direct pathway in the network (including the
input connections). However, the connections in the indirect pathway used in Simulation 4

were fixed; that is, they had a learning rate of 0.

Maximum response time: This parameter functioned as our training criterion for

Simulation 1. After specifying a learning rate (see above), we needed some way of
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deciding when to stop training on colors and words. Training ended when the network

could respond accurately to all of the test stimuli (control, conflict and congruent stimuli in

each task) within a specified number of cycles, which we call the maximum response time.

A lower value (faster response) meant more training, and a higher value meant less

training. The value we used was 50 cycles. There were two primary constraints on this

value: a) test performance after training had to simulate the basic Stroop effect (see Figure

5); b) regression of simulation cycles on empirical reaction time data had to yield a positive

intercept value of reasonable magnitude. A small or zero valued intercept would suggest -

unreasonably - that our model simulates all of the processes involved in human

performance; a negative intercept would indicate that the effects of interest were only a

small part of the model's overall performance. The intercept values for all simulations

reported were in the 200-400 msec range. Both of these constraints on the maximum

reaction time were relatively weak, and reasonable performance was achievable with a

broad range of values. This parameter interacted with the training frequency ratio and the

noise parameters in the network (see below).

Preset input weights: The weights from the input to the intermediate units in each

pathway were given preassigned values at the outset of training. This was required for
changes in reaction time with training to follow a power law. This finding is theoretically
important, for it suggests that the power law may only apply to the learning of simple

mappings, and that learning at the early stages of processing (e.g., stimulus encoding) are

not involved in the tasks we have simulated. The actual values preassigned to the input
weights were picked based on the weights that are achieved when the network is allowed to

learn this set of weights on its own.

Indirect pathway: This was the module and corresponding set of weights that was

added to the basic network for Simulation 4. The number of units in this module was the

same as in all others (2). The strengths assigned to the connections in this pathway were

chosen to fit best the empirical data concerning reaction times and interference effects early

in training on shape naming.

Parameters of the response mechanism: Three parameters were associated with the

response mechanism: the rate at which evidence accumulated, the noise associated with
this process, and the threshold for a response. The rate and threshold parameters were

inversely related to one another doubling the accumulation rate was equivalent to halving
the response threshold. Together these values interacted with the maximum response time
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to determine the networks performance for a given amount of training. They also showed a
complex interaction with the cascade rate (see below), that affected the relative magnitude
of interference effects versus speed of processing differences between the pathways.
Values for these parameters were chosen which provided the best fit to the basic Stroop

effect, given the constraints imposed by the other parameters of the models (i.e., learning
rate, maximum response time, and attentional influence). The amount of noise associated
with the response mechanism interacted with the amount of noise added to the net input of
processing units. The constraints on both noise parameters are discussed below.

Cascade rate: This parameter determined the rate at which each unit accumulated
activation. Its value was the same for all units in the network (except input units, which
were always maximally excited or inhibited). The cascade rate interacted with the response
rate and response threshold to determine both reaction time and the pattern of interference

effects between processes. Values for these parameters were chosen which provided the
best fit to the basic Stroop effect, given the constraints imposed by the other parameters of
the mndels (i.e., learning rate, maximum response time, and attention influence).

Noise: This scaled the magnitude of Gaussian distributed noise added to the net input of
each unit (except the input units). Values of this parameter and the noise in the response
mechanism were chosen to provide maximum variance without sacrificing accuracy of
performance. This interacted with the maximum response time, to determine the amount of
training received by the networks used in Simulations 1,2, 5 and 6. These parameters also
had an influence on the relationship between mean reaction time and variance as a function
of training. Values were chosen - within the limits discussed above - which provided
the closest match between the exponents of the power functions describing the changes in
mean reaction time and standard deviation with practice.

Magnitude of attentional influence: Two parameters determined the magnitude of
attentional effects in the model. These were the size of the resting negative bias on
intermediate units in the two processing pathways, and the size of the weights from the task
demand units to these intermediate units. The magnitudes of these two parameters were
constrained to be equal, so that with full activation of a given task demand unit,
intermediate units in the corresponding pathway had a resting net input of zero and an
activation of 0.5 (the rationale for this is explained in Attentional Selection under The
Model). The main effect of varying these parameters, therefore, was to change the resting
activation level of intermediate units in the unattended pathway (since their task demand
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unit was not active, and therefore their negative bias was not offset). The magnitude of the

attentional influence interacted with the amount of training received by the network,

influencing the size of the interference and facilitation effects observed. A set of values

was chosen that provided the best fit to the empirical data in each experiment (see "Free

parameters" under Simulation Methods).

Number of units/module: This was essentially a free parameter. In order to keep the

networks as simple as possible, we chose the fewest number of units possible to simulate

each task.


